
The finite-multiset construction in HoTT

Vikraman Choudhury 1 Marcelo Fiore 2

August 12, 2019
1Indiana University

2University of Cambridge

1

Outline

Free monoids

Free commutative monoids

Applications

Free symmetric monoidal categories

2

Free monoids

The forgetful functor from Mon to Set has a left adjoint.

Mon

Set

L

LA = A∗ = finite strings with elements drawn from A

3

Free monoids

The forgetful functor from Mon to Set has a left adjoint.

Mon

Set

L

LA = A∗ = finite strings with elements drawn from A

3

Universal property

A M(e,⊗)

LA

f

ηA
∃! f#

1

1HoTT book, lemma 6.11.5

4

Lists

data List (A : Type) : Type where

[] : List A

:: : A → List A → List A

++ : List A → List A → List A

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

5

Lists

data List (A : Type) : Type where

[] : List A

:: : A → List A → List A

++ : List A → List A → List A

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

5

Lists

(List A,[],++) is a monoid

++-unitl : ∀ xs → [] ++ xs == xs

++-unitr : ∀ xs → xs ++ [] == xs

++-assoc : ∀ xs ys zs

→ xs ++ (ys ++ zs) == (xs ++ ys) ++ zs

6

Lists

Given a monoid (M,e,⊗) and f : A → M, we have

f# : List A → M

f# [] = e

f# (x :: xs) = f x ⊗ f# xs

f#-++ : ∀ xs ys → f# (xs ++ ys) == f# xs ⊗ f# ys

For any monoid homomorphism h : List A → M,

f#-unique : h == f#

7

Outline

Free monoids

Free commutative monoids

Applications

Free symmetric monoidal categories

8

Free commutative monoids

The forgetful functor from CMon to Set also has a left adjoint.

CMon

Set

M

M A = finite multisets with elements drawn from A.

For example, the free commutative monoid on the set of prime
numbers gives the natural numbers N with multiplication.

9

Free commutative monoids

The forgetful functor from CMon to Set also has a left adjoint.

CMon

Set

M

M A = finite multisets with elements drawn from A.

For example, the free commutative monoid on the set of prime
numbers gives the natural numbers N with multiplication.

9

Universal property

A M(e,⊗)

M A

f

ηA
∃! f#

How do we define finite multisets in type theory?

10

Universal property

A M(e,⊗)

M A

f

ηA
∃! f#

How do we define finite multisets in type theory?

10

Multiset/Bag

data Mset (A : Type) : Type where

[] : Mset A

:: : A → Mset A → Mset A

swap : (x y : A) (xs : Mset A)

→ x :: y :: xs == y :: x :: xs

trunc : is-set (Mset A)

11

Multiset elimination

MsetElim : {B : Mset A → hSet}

([]* : B [])

(_::*_ : (x : A) {xs : Mset A}

→ B xs → B (x :: xs))

(swap* : (x y : A) {xs : Mset A} (b : B xs)

→ PathP (λ i → B (swap x y xs i))

(x ::* (y ::* b)) (y ::* (x ::* b)))

MsetElimProp : {B : Mset A → hProp}

([]* : B [])

(_::*_ : (x : A) {xs : Mset A}

→ B xs → B (x :: xs))

12

Multiset union

_
⋃
_ : Mset A → Mset A → Mset A

[]
⋃

ys = ys

(x :: xs)
⋃

ys = x :: (xs
⋃

ys)

(swap x y xs i)
⋃

ys = swap x y (xs
⋃

ys) i

(trunc xs zs p q i j)
⋃

ys =

trunc (xs
⋃

ys) (zs
⋃

ys)

(λ i → p i
⋃

ys) (λ i → q i
⋃

ys) i j

13

Multiset union

(Mset A,[],
⋃
) is a monoid

⋃
-assoc : ∀ xs ys zs

→ xs
⋃

(ys
⋃

zs) == (xs
⋃

ys)
⋃

zs

⋃
-unitl : ∀ xs → []

⋃
xs == xs

⋃
-unitr : ∀ xs → xs

⋃
[] == xs

14

Commutativity of union

Canonical form for x :: xs

::-
⋃

: ∀ x xs → x :: xs == xs
⋃

[x]

::-
⋃

x [] i = [x]

::-
⋃

x (y :: xs) i =

x :: y :: xs y :: (xs
⋃

[x])

x :: y :: xs y :: x :: xs
swap x y xs i

x :: y :: xs y :: (::-
⋃

x xs j)

15

Commutativity of union

⋃
-comm : ∀ xs ys → xs

⋃
ys == ys

⋃
xs⋃

-comm [] ys i =
⋃
-unitr ys (~ i)⋃

-comm (x :: xs) ys i =

x :: (xs
⋃

ys) ys
⋃

(x :: xs) ys
⋃

(x :: xs)

x :: (ys
⋃

xs) (ys
⋃

xs)
⋃

[x] ys
⋃

(xs
⋃

[x])

x ::
⋃
-comm xs ys (~ j)

::-
⋃

x (ys
⋃

xs) i assoc-
⋃

ys xs [x] k

ys
⋃

(::-
⋃

x xs (~ j))

ys
⋃

(x :: xs)

16

Multiset

Given a commutative monoid (M,e,⊗) and f : A → M, we have

f# : Mset A → M

f#-[] : f# [] == e

f#-
⋃

: ∀ xs ys → f# (xs
⋃

ys) == f# xs ⊗ f# ys

For any commutative monoid homomorphism h : List A → M,

f#-unique : h == f#

17

Path space

Can we characterise the path space of Mset A?

code : Mset A → Mset A → hProp

code [] [] = >
...

code (a :: as) (b :: bs) =

(a == b) ∧ code as bs ...

18

Path space

a as = b bs

a = b as = bs

19

Path space

a as = b bs

a = b as = bs

19

Path space

a as = b bs

a b cs = b a cs

20

Path space

a as = b bs

a b cs = b a cs

20

Path space

code : Mset A → Mset A → hProp

code [] [] = >
...

code (a :: as) (b :: bs) =

(a == b) ∧ code as bs

∨ ∃ cs. code as (b :: cs) ∧ code bs (a :: cs)

21

Multiset

commrel : (a b c : A) (as bs cs : Mset A)

→ (p : as == b :: cs)

→ (q : a :: cs == bs)

→ a :: as == b :: bs 2

swap x y xs =

comm x y (y :: xs) (x :: xs) xs refl refl

2Marcelo Fiore. “An axiomatics and a combinatorial model of
creation/annihilation operators”. In: arXiv preprint arXiv:1506.06402 (2015).

22

Multiset

data Mset (A : Type) : Type where

[] : Mset A

:: : A → Mset A → Mset A

commrel : (a b c : A) (as bs cs : Mset A)

→ (p : as == b :: cs)

→ (q : a :: cs == bs)

→ a :: as == b :: bs

trunc : is-set (Mset A)

This also satisfies the same universal property!

23

Multiset

data Mset (A : Type) : Type where

[] : Mset A

:: : A → Mset A → Mset A

commrel : (a b c : A) (as bs cs : Mset A)

→ (p : as == b :: cs)

→ (q : a :: cs == bs)

→ a :: as == b :: bs

trunc : is-set (Mset A)

This also satisfies the same universal property!

23

Outline

Free monoids

Free commutative monoids

Applications

Free symmetric monoidal categories

24

Strong symmetric monoidal functor

M (A+ B) ' M A×M B

h : A+ B→ M A×M B
h(inl(a)) = ([a], [])

h(inr(b)) = ([], [b])

f : M (A+ B) → M A×M B
f = h#

g : M A×M B M (inl)×M (inr)−−−−−−−−−−→ M (A+ B)×M (A+ B) ∪−→ M (A+ B)

25

Monad on hSet

hSet

M

hSet

P=hProp(−)

ηA : A→ M A
ηA(a) := [a]
µA : M2 A→ M A
µA := id#

ηA : A→ P A
ηA(a) := λx.a = x
µA : P2 A→ P A
µA(f) := λx.∃y.f (y)(x)

26

M Rel

f : A −7→ B := M A× B→ hProp

f̂ : B→ (M A→ hProp)
f̂ (b)(α) := f (α,b)
f̂# : M B→ (M A→ hProp)

idA : A −7→ A
idA(α,a) := α = [a]
f : A −7→ B, g : B −7→ C
g ◦ f (α, c) := ∃β.f̂#(β)(α) ∧ g(β, c)

A× B := A+ B
A⇒ B := M A× B

2(M, e, ·) acts on hProp

ê = λx.x = e

p ·̂ q = λx.∃x1x2.p(x1) ∧ p(x2) ∧ x = x1 · x2

27

Monoidal structure

Given f ,g : A −7→ B,

Addition
(f + g)(α,b) := f (α,b) ∨ g(α,b)

Multiplication
(f · g)(α,b) := f (α,b) ·̂ g(α,b)

28

Differential structure

Differentiation
∂f : A −7→ A× B

∂f (α, (a,b)) := f (α ∪ [a],b)
Leibniz’s Rule

∂(f · g) = ∂f · g+ ∂g · f

2

α ∪ [a] = α1 ∪ α2 '

∃α0.(α = α0 ∪ α2) ∧ (α0 ∪ [a] = α1)

∨(α = α1 ∪ α0) ∧ (α0 ∪ [a] = α2)

29

Outline

Free monoids

Free commutative monoids

Applications

Free symmetric monoidal categories

30

Free symmetric monoidal completion (Work in Progress)

data SMC (A : Type) : Type where

[] : SMC A

:: : A → SMC A → SMC A

swap : (x y : A) (xs : SMC A)

→ x :: y :: xs == y :: x :: xs

...

trunc : is-gpd (SMC A)

y :: x :: z :: xs x :: y :: z :: xs x :: z :: y :: xs z :: x :: y :: xs

y :: x :: z :: xs y :: z :: x :: xs z :: y :: x :: xs z :: x :: y :: xs

swap y x (z :: xs) i x :: (swap y z xs) i swap x z (:: y xs) i

y :: (swap x z xs i) swap y z (x :: xs) i z :: (swap y x xs) i

31

Free symmetric monoidal completion (Work in Progress)

data SMC (A : Type) : Type where

[] : SMC A

:: : A → SMC A → SMC A

swap : (x y : A) (xs : SMC A)

→ x :: y :: xs == y :: x :: xs

...

trunc : is-gpd (SMC A)

y :: x :: z :: xs x :: y :: z :: xs x :: z :: y :: xs z :: x :: y :: xs

y :: x :: z :: xs y :: z :: x :: xs z :: y :: x :: xs z :: x :: y :: xs

swap y x (z :: xs) i x :: (swap y z xs) i swap x z (:: y xs) i

y :: (swap x z xs i) swap y z (x :: xs) i z :: (swap y x xs) i

31

Other applications

• Differential calculus of generalised species3

• SMC(1) '
∑
n:N

∑
X:U

‖X = Fin(n)‖ gives a denotational

semantics for reversible languages4

3M. Fiore et al. “The cartesian closed bicategory of generalised species of
structures”. In: Journal of the London Mathematical Society 77.1 (2008),
pp. 203–220.
4Jacques Carette et al. “From Reversible Programs to Univalent Universes and
Back”. In: Electr. Notes Theor. Comput. Sci. 336 (2018), pp. 5–25.

32

	Free monoids
	Free commutative monoids
	Applications
	Free symmetric monoidal categories

