The finite-multiset construction in HoTT

Vikraman Choudhury ${ }^{1}$ Marcelo Fiore ${ }^{2}$
August 12, 2019
${ }^{1}$ Indiana University
${ }^{2}$ University of Cambridge

Outline

Free monoids

Free commutative monoids

Applications

Free symmetric monoidal categories

Free monoids

The forgetful functor from Mon to Set has a left adjoint.

Free monoids

The forgetful functor from Mon to Set has a left adjoint.

$\mathcal{L} A=A^{*}=$ finite strings with elements drawn from A

Universal property

1
${ }^{1}$ HoTT book, lemma 6.11.5
data List (A : Type) : Type where
[] : List A
: : : A List A List A

$$
\begin{aligned}
& \text { data List (A : Type) : Type where } \\
& {[]: \text { List A }} \\
& -::-\quad A \rightarrow \text { List } A \rightarrow \text { List } A \\
& \text { _}^{++} \text {_ List } A \rightarrow \text { List } A \rightarrow \text { List } A \\
& {[]++y s=y s} \\
& (x:: x s)++y s=x::(x s++y s)
\end{aligned}
$$

(List $A,[],++$) is a monoid

$$
\begin{aligned}
& \text { ++-unitl : } \forall \mathrm{xs} \rightarrow[]++\mathrm{xs}==\mathrm{xs} \\
& \text { ++-unitr : } \forall \mathrm{xs} \rightarrow \mathrm{xs}++[]==\mathrm{xs} \\
& +++ \text { assoc : } \forall \mathrm{xs} \text { ys zs } \\
& \quad \rightarrow \mathrm{xs}++(\mathrm{ys}++\mathrm{zs})=(\mathrm{xs}++\mathrm{ys})++\mathrm{zs}
\end{aligned}
$$

Lists

Given a monoid $(\mathrm{M}, \mathrm{e}, \otimes)$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{M}$, we have

$$
\begin{aligned}
& f^{\#}: \text { List } A \rightarrow M \\
& f^{\#}[]=e \\
& f^{\#}(x:: x s)=f x \otimes f^{\#} x s
\end{aligned}
$$

$$
f^{\#-++}: \forall \text { xs ys } \rightarrow f^{\#}(\text { xs }++ \text { ys })==f^{\#} \text { xs } \otimes f^{\#} \text { ys }
$$

For any monoid homomorphism h : List $A \rightarrow M$,

$$
f^{\#} \text {-unique : h == f\# }
$$

Outline

Free monoids

Free commutative monoids

Applications

Free symmetric monoidal categories

Free commutative monoids

The forgetful functor from CMon to Set also has a left adjoint.

Free commutative monoids

The forgetful functor from CMon to Set also has a left adjoint.

$\mathcal{M A}=$ finite multisets with elements drawn from A.
For example, the free commutative monoid on the set of prime numbers gives the natural numbers \mathbb{N} with multiplication.

Universal property

Universal property

How do we define finite multisets in type theory?

Multiset/Bag

data Mset (A : Type) : Type where
[] : Mset A
: : : A \rightarrow Mset $A \rightarrow$ Mset A
swap : (x y : A) (xs : Mset A)
$\rightarrow x:: y:: x s==y:: x:: x s$
trunc : is-set (Mset A)

Multiset elimination

MsetElim : $\{B:$ Mset $A \rightarrow$ hSet $\}$

$$
\begin{aligned}
& \left([]^{*}: B[]\right) \\
& \left(-::^{*}-(x: A)\{x s: M \operatorname{set} A\}\right. \\
& \quad \rightarrow B \times s \rightarrow B(x:: x s))
\end{aligned}
$$

$$
\left(s^{2} a\right)^{*}:(x \text { y : A) }\{x s: \text { Mset } A\}(b: B x)
$$

$$
\rightarrow \text { PathP }(\lambda i \rightarrow B(\operatorname{swap} x \text { y xs i)) }
$$

$$
\left.\left(x::^{*}\left(y::^{*} b\right)\right)\left(y::^{*}\left(x::^{*} b\right)\right)\right)
$$

MsetElimProp : \{B:Mset $A \rightarrow$ hProp $\}$

$$
\begin{aligned}
& \left([]^{*}: B[]\right) \\
& \left(-::^{*}-:(x: A)\{x s: M s e t A\}\right. \\
& \rightarrow B \times s \rightarrow B(x:: x s))
\end{aligned}
$$

Multiset union

\bigcup_{-}: Mset $A \rightarrow$ Mset $A \rightarrow$ Mset A
[] U ys = ys
($\mathrm{x}:: \mathrm{xs}$) $\cup \mathrm{ys}=\mathrm{x}::(\mathrm{xs} \bigcup \mathrm{ys})$
(swap x y xs i) \bigcup ys = swap x y (xs \bigcup ys) i
(trunc xs zs p q i j) \cup ys =
trunc (xs $\cup y s)(z s \cup y s)$

$$
(\lambda i \rightarrow p i \bigcup y s)(\lambda i \rightarrow q i \bigcup y s) i j
$$

Multiset union

(Mset $A,[], \cup$) is a monoid

$$
\begin{aligned}
& \text { U-assoc : } \forall \text { xs ys zs } \\
& \rightarrow \mathrm{xs} \cup(y s \cup \mathrm{zs})=(\mathrm{xs} \cup \mathrm{ys}) \cup \mathrm{zs} \\
& \text { U-unitl }: \forall \mathrm{xs} \rightarrow[] \cup \mathrm{xs}=\mathrm{xs} \\
& \text { U-unitr }: \forall \mathrm{xs} \rightarrow \mathrm{xs} \cup[]==\mathrm{xs}
\end{aligned}
$$

Commutativity of union

Canonical form for $\mathrm{x}:$: xs

$$
\begin{aligned}
& ::-\bigcup: \forall x \text { xs } \rightarrow x:: \text { xs }==x s \cup[x] \\
& ::-\bigcup x[] i=[x] \\
& ::-\bigcup x(y:: x s) i=
\end{aligned}
$$

$$
x:: y:: x s---------------->y::(x s \cup[x])
$$

Commutativity of union

$$
\begin{aligned}
& \text { U-comm : } \forall \text { xs ys } \rightarrow \text { xs } \bigcup \text { ys == ys } \bigcup \text { xs } \\
& \text { U-comm [] ys i = U-unitr ys (} \sim \text { i) } \\
& \text { U-comm (x :: xs) ys i = }
\end{aligned}
$$

Multiset

Given a commutative monoid $(\mathrm{M}, \mathrm{e}, \otimes)$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{M}$, we have $\mathrm{f}^{\#}:$ Mset $\mathrm{A} \rightarrow \mathrm{M}$

$$
\begin{aligned}
& f^{\#-[]: f^{\#}[]==e} \\
& f^{\#}-\cup: \forall x s \text { ys } \rightarrow f^{\#}(x s \cup y s)=f^{\#} x s \otimes f^{\#} y s
\end{aligned}
$$

For any commutative monoid homomorphism $\mathrm{h}:$ List $\mathrm{A} \rightarrow \mathrm{M}$,

$$
\mathrm{f}^{\#} \text {-unique : h == f\# }
$$

Path space

Can we characterise the path space of Mset A?

$$
\begin{aligned}
& \text { code : Mset } A \rightarrow \text { Mset } A \rightarrow \text { hProp } \\
& \text { code }[][]=T \\
& \ldots \\
& \text { code }(a:: \text { as })(b:: \text { bs })= \\
& (a==b) \wedge \text { code as bs } \ldots
\end{aligned}
$$

Path space

Path space

a	as

$a=b \quad a s \quad b s$

Path space

Path space

Path space

$$
\begin{aligned}
& \text { code : Mset } A \rightarrow \text { Mset } A \rightarrow \text { hProp } \\
& \text { code }[][]=\top \\
& \ldots \\
& \text { code }(\mathrm{a}:: \text { as })(\mathrm{b}:: \mathrm{bs})= \\
& \quad(\mathrm{a}==\mathrm{b}) \wedge \text { code as bs } \\
& \vee \exists \mathrm{cs} . \text { code as }(\mathrm{b}:: \mathrm{cs}) \wedge \text { code bs }(\mathrm{a}:: \mathrm{cs})
\end{aligned}
$$

Multiset

$$
\begin{aligned}
\text { commrel } & :(a b c: A)(\text { as bs cs : Mset } A) \\
& \rightarrow(p: a s==b:: c s) \\
& \rightarrow(q: a:: c s==b s) \\
& \rightarrow a:: a s==b:: b s^{2}
\end{aligned}
$$

swap x y xs = comm x y (y : : xs) (x :: xs) xs refl refl

[^0]
Multiset

data Mset (A : Type) : Type where
[] : Mset A
: : : A \rightarrow Mset $A \rightarrow$ Mset A
commrel : (a b c : A) (as bs cs : Mset A)
$\rightarrow(\mathrm{p}:$ as $==\mathrm{b}:: \mathrm{cs})$
\rightarrow (q : a :: cs == bs)
\rightarrow a :: as == b :: bs
trunc : is-set (Mset A)

Multiset

data Mset (A : Type) : Type where
[] : Mset A
: : : A Mset A Mset A
commrel : (a b c : A) (as bs cs : Mset A)
$\rightarrow(\mathrm{p}: \mathrm{as}=\mathrm{b}:: \mathrm{cs})$
$\rightarrow(\mathrm{q}: \mathrm{a}:: \mathrm{cs}==\mathrm{bs})$
\rightarrow a :: as == b :: bs
trunc : is-set (Mset A)
This also satisfies the same universal property!

Outline

Free monoids
 Free commutative monoids

Applications

Free symmetric monoidal categories

Strong symmetric monoidal functor

$$
\mathcal{M}(A+B) \simeq \mathcal{M} A \times \mathcal{M} B
$$

$$
\begin{array}{ll}
h: A+B \rightarrow \mathcal{M} A \times \mathcal{M} B & f: \mathcal{M}(A+B) \rightarrow \mathcal{M} A \times \mathcal{M} B \\
h(\operatorname{inl}((a))=([a],[]) & f=h^{\#} \\
h(\operatorname{inr}(b))=([],[b]) & \\
g: & \mathcal{M} A \times \mathcal{M} B \xrightarrow{\mathcal{M}(\text { inl }) \times \mathcal{M}(\text { inr })} \mathcal{M}(A+B) \times \mathcal{M}(A+B) \xrightarrow{\cup} \mathcal{M}(A+B)
\end{array}
$$

Monad on hSet

hSet

$$
\begin{aligned}
& \eta_{A}: A \rightarrow \mathcal{M A} \\
& \eta_{A}(a):=[a] \\
& \mu_{A}: \mathcal{M}^{2} A \rightarrow \mathcal{M A} \\
& \mu_{A}:=i d^{\#}
\end{aligned}
$$

hSet

$$
\eta_{A}(a):=\lambda x \cdot a=x
$$

$$
\mu_{\mathrm{A}}: \mathcal{P}^{2} \mathrm{~A} \rightarrow \mathcal{P} \mathrm{~A}
$$

$$
\mu_{A}(f):=\lambda x \cdot \exists y \cdot f(y)(x)
$$

M Rel

$$
\begin{aligned}
& f: A \rightarrow B:=\mathcal{M} A \times B \rightarrow \text { hProp } \\
& \hat{f}: B \rightarrow(\mathcal{M} A \rightarrow h \text { Prop }) \\
& i d_{A}: A \longrightarrow A \\
& i d_{A}(\alpha, a):=\alpha=[a] \\
& \hat{f}(b)(\alpha):=f(\alpha, b) \\
& \hat{f}^{\#}: \mathcal{M} B \rightarrow(\mathcal{M} A \rightarrow \text { hProp }) \\
& f: A \rightarrow B, g: B \rightarrow C \\
& g \circ f(\alpha, c):=\exists \beta \cdot \hat{f} \#(\beta)(\alpha) \wedge g(\beta, c) \\
& A \times B:=A+B \\
& A \Rightarrow B:=\mathcal{M} A \times B
\end{aligned}
$$

${ }^{2}(M, e, \cdot)$ acts on hProp

$$
\begin{gathered}
\hat{e}=\lambda x \cdot x=e \\
p \hat{\bullet} q=\lambda x \cdot \exists x_{1} x_{2} \cdot p\left(x_{1}\right) \wedge p\left(x_{2}\right) \wedge x=x_{1} \cdot x_{2}
\end{gathered}
$$

Monoidal structure

Given $f, g: A \longrightarrow B$,
Addition

$$
(f+g)(\alpha, b):=f(\alpha, b) \vee g(\alpha, b)
$$

Multiplication

$$
(f \cdot g)(\alpha, b):=f(\alpha, b) \wedge g(\alpha, b)
$$

Differential structure

Differentiation

$$
\begin{aligned}
& \partial f: A \mapsto A \times B \\
& \partial f(\alpha,(a, b)):=f(\alpha \cup[a], b)
\end{aligned}
$$

Leibniz's Rule

$$
\partial(f \cdot g)=\partial f \cdot g+\partial g \cdot f
$$

2

$$
\begin{gathered}
\alpha \cup[a]=\alpha_{1} \cup \alpha_{2} \simeq \\
\exists \alpha_{0} \cdot\left(\alpha=\alpha_{0} \cup \alpha_{2}\right) \wedge\left(\alpha_{0} \cup[a]=\alpha_{1}\right) \\
\vee\left(\alpha=\alpha_{1} \cup \alpha_{0}\right) \wedge\left(\alpha_{0} \cup[a]=\alpha_{2}\right)
\end{gathered}
$$

Outline

Free monoids
Free commutative monoids
Applications
Free symmetric monoidal categories

Free symmetric monoidal completion (Work in Progress)

data SMC (A : Type) : Type where
[] : SMC A
_: : _ : A \rightarrow SMC A \rightarrow SMC A
swap : (x y : A) (xs : SMC A)

$$
\rightarrow \text { x :: y :: xs == y :: x :: xs }
$$

trunc : is-gpd (SMC A)

Free symmetric monoidal completion (Work in Progress)

data SMC (A : Type) : Type where
 [] : SMC A
 : : : A \rightarrow SMC $A \rightarrow$ SMC A
 swap : (x y : A) (xs : SMC A)
 $$
\rightarrow \text { x :: y :: xs == y :: x :: xs }
$$

trunc : is-gpd (SMC A)
swap $y \times(z:: x s) i \quad x::($ swap $y z x s) i \quad$ swap $x z(:: y$ xs $)$ i
$y:: x:: z:: x s \longrightarrow x:: y:: z:: x s \longrightarrow x:: z:: y:: x s \longrightarrow z:: x:: y:: x s$
$\|\|\|$

Other applications

- Differential calculus of generalised species ${ }^{3}$
- $\operatorname{SMC}(1) \simeq \sum_{n: \mathbb{N}} \sum_{x: U}\|X=F i n(n)\|$ gives a denotational semantics for reversible languages ${ }^{4}$

[^1]
[^0]: ${ }^{2}$ Marcelo Fiore. "An axiomatics and a combinatorial model of creation/annihilation operators". In: arXiv preprint arXiv:1506.06402 (2015).

[^1]: ${ }^{3}$ M. Fiore et al. "The cartesian closed bicategory of generalised species of structures". In: Journal of the London Mathematical Society 77.1 (2008), pp. 203-220.
 ${ }^{4}$ Jacques Carette et al. "From Reversible Programs to Univalent Universes and Back". In: Electr. Notes Theor. Comput. Sci. 336 (2018), pp. 5-25.

