The finite-multiset construction in HOTT

Vikraman Choudhury’ Marcelo Fiore 2
August 12, 2019

TIndiana University

2University of Cambridge

Free monoids

Free monoids

The forgetful functor from Mon to Set has a left adjoint.

Mon

(]

Set

Free monoids

The forgetful functor from Mon to Set has a left adjoint.

Mon

Set

LA = A* = finite strings with elements drawn from A

Universal property

A—TL s Mew)
A
A ,//
=l
LA

"HoTT book, lemma 611.5

data List (A : Type) : Type where
[] : List A
—ti- A — List A — List A

data List (A : Type) : Type where
[] : List A
—ti- A — List A — List A

++ : List A — List A — List A
[]++ys =ys
(x :: xs) ++ys = x :: (xs ++ ys)

(List A,[],++) is a monoid

++-unitl : ¥V xs — []| ++ xs == xs
++-unitr : ¥ xs — xs ++ [| == xs

++-assoc : Y Xs ys zs
— xs ++ (ys ++ zs) == (xs ++ ys) ++ zs

Given a monoid (M,e,®) and f : A — M, we have
ft ;o List A - M
ff[]l=e
ft (x :: xs) = f x o ff xs
fl-++ ¥ xs ys — f (xs ++ ys) == ! xs @ f ys

For any monoid homomorphism h : List A — M,

fi-unique : h == f#

Free commutative monoids

Free commutative monoids

The forgetful functor from CMon to Set also has a left adjoint.

CMon

(|

Set

Free commutative monoids

The forgetful functor from CMon to Set also has a left adjoint.

CMon

Set

MA =finite multisets with elements drawn from A.

For example, the free commutative monoid on the set of prime
numbers gives the natural numbers N with multiplication.

Universal property

A -

10

Universal property

A /

How do we define finite multisets in type theory?

10

Multiset/Bag

data Mset (A : Type) : Type where
[] : Mset A
—ti- A — Mset A — Mset A
swap : (x y : A) (xs : Mset A)
> X 11y i XS ==y oiiX iiXS
trunc : is-set (Mset A)

1

Multiset elimination

MsetElim : {B : Mset A — hSet}
([1* - 8 [D
(Cee*~ o (x ¢ A) {xs : Mset A}
—+Bxs — B (x :: xs))
(swap* : (x y : A) {xs : Mset A} (b : B xs)
— PathP (A1 — B (swap x y xs i))
(x ::* (y :2* b)) (y ::* (x ::* b))

MsetElimProp : {B : Mset A — hProp}
([1* : 8 [D
(Cee*_ o (x @ A) {xs : Mset A}
—+ B xs — B (x :: xs))

12

Multiset union

J- : Mset A — Mset A — Mset A
[JUys =ys
(x ::xs) Uys=x:: (xsys)
(swap x y xs i) |J ys = swap x y (xs |J ys) i
(trunc xs zs p g i j) U ys =
trunc (xs |J ys) (zs U ys)
Ai—=pilUys) Wi—>qgilUys)ij

13

Multiset union

(Mset A,[]1,U)) is a monoid

J-assoc : ¥ xs ys zs

—xs |J (ys U zs) == (xs |J ys) U zs
U-unitl : ¥V xs — [] |J xs == xs

U-unitr : ¥V xs — xs |J [] == xs

14

Commutativity of union

Canonical form for x :: xs
- s ¥ xxs > x:ixs=xs J[x]
-Ux[i=[x]
ci-U x (y @2 xs) i

£ 88) 88 I8 Soocoooocoononoo >y (xsULx]D

X ity iixs y o (::-U x xs j)

swap X y xs i

15

Commutativity of union

(J-comm :

Y xsys — xs |Jys ==ys | xs

U-comm [] ys i = |J-unitr ys (~ i)

J-comm (x ::

x:t (xsUys) —————-

T

x :: U-comm xs ys (~ j)

x :: (ys U xs))

****** > ys U (x :: xs)

—
-y x (ys U xs) i

xs) ys i =

ys U (x :: xs)
ys U (x :: xs)

! l

ys U (::-U x xs (~ 1))

(ysUxs) ULlx] ys U (s UL x D

%
assoc-{J ys xs [x] k

Multiset

Given a commutative monoid (M,e,®) and f : A — M, we have

f* . Mset A — M

fi-1: f[I==e
fi-J : ¥ xsys — f (xs U ys) == f xs e f# ys

For any commutative monoid homomorphism h : List A — N,

fi-unique : h == ft

17

Can we characterise the path space of Mset A?
code : Mset A — Mset A — hProp
code [][]=T

code (a :: as) (b :: bs) =
(a==b) A code as bs ...

20

20

code : Mset A — Mset A — hProp
code [][] =T

code (a :: as) (b :: bs) =

(a==b) A code as bs
V 3 cs. code as (b :: cs) A code bs (a :: cs)

21

Multiset

commrel : (abc : A) (as bs cs : Mset A)

—~ (p : as ==b :: cs)

— (q : a :: cs == bs)

— az::as==Db:: bs”’
swap X y XS =

comm x y (y :: xs) (x :: xs) xs refl refl

“Marcelo Fiore. “An axiomatics and a combinatorial model of
creation/annihilation operators”. In: arXiv preprint arXiv:1506.06402 (2015).

22

Multiset

data Mset (A : Type) : Type where
[]: Mset A
—ii_ A — Mset A — Mset A
commrel : (abc : A) (as bs cs : Mset A)

—~ (p: as==b :: cs)
— (q : a :: cs == bs)
— a::as ==b :: bs

trunc : is-set (Mset A)

23

Multiset

data Mset (A : Type) : Type where
[]: Mset A
—ii_ A — Mset A — Mset A
commrel : (abc : A) (as bs cs : Mset A)

—~ (p: as==b :: cs)
— (q : a :: cs == bs)
— a::as ==b :: bs

trunc : is-set (Mset A)

This also satisfies the same universal property!

23

Applications

2%

Strong symmetric monoidal functor

MA+B)~MAx MB

h:A+B—= MAxMB
| f:MA+B) - MAxMB
h(inl(a)) = ([a],[1) = ht

h(inr(b)) = ([1.[6])

M (inl)x M (inr)
_

9: MAXMB M (A+B)xM (A+ B) = M (A+B)

25

Monad on hSet

M

-

hSet
natA— MA
na(a) = [a]
pat M2A - MA
pa = id*

P=hProp(-)

=

hSet
na:A—PA
na(a) = Ax.a = x
pa:P2A S PA
ua(f) = M3y f(y) ()

26

f:A—+ B:=MAXB— hProp

Idgy: A= A

ida(a,a) == a =[d]

f:A—+—B g:B—+C

gof(a,c) =38#(B)(a) A g(B,¢)
AxB=A+8B

A=B=MAxB

f:B— (MA — hProp)

f(b)(@) = f(a,b)
f#: MB — (MA — hProp)

(M, e,-) acts on hProp
e=XMx=e¢e

p*q=M3x.p(X1) Ap(Q) AX = XX

27

Monoidal structure

Givenf,g: A — B,

Addition

(f+g)(av b) = f(avb) \ Q(Oé, b)
Multiplication

(f - 9)(e, b) :==f(e, b) * g(ex, b)

28

Differential structure

Differentiation
f 1A——AXxB
of (a,(a, b)) = f(aU[a],b)

Leibniz's Rule
of -9)=0f-g+099-f

aUldl=aUa; ~
Jovo.(a@ = a0 Uaw) A (e U [a] = o)
V(e =a1 Ua) A (o U [a] = a2)

29

Free symmetric monoidal categories

30

Free symmetric monoidal completion (Work in Progress)

data SMC (A : Type) : Type where
[]: SHC A
i:i A — SMC A — SMC A
swap : (xy : A) (xs : SMC A)
— X Iy iiXS ==y oiiX iiXS

trunc : is-gpd (SMC A)

31

Free symmetric monoidal completion (Work in Progress)

data SMC (A : Type) : Type where
[]: SHC A
i:i A — SMC A — SMC A
swap : (xy : A) (xs : SMC A)
— X Iy iiXS ==y oiiX iiXS

trunc : is-gpd (SMC A)

swap y x (z :: xs) i x :: (swapy z xs) i swap x z (::y xs) i

y iiXx iz :iiXxs — X iy iz :iixs — 388 # 88 ¥ 88 I8 — % 58 W88 Y 88 &8

y i X :iizZ:IilXs H y :tzZ X :iiXs H Z 1y lXIiIXS H Z XYy :IilXs

y :: (swap x z xs i) swapy z (x :: xs) i z :: (swap y x xs) i

31

Other applications

- Differential calculus of generalised species®

* SMC(1) ~ > °) " |IX = Fin(n)]| gives a denotational
n:N X:U
semantics for reversible languages”

*M. Fiore et al. “The cartesian closed bicategory of generalised species of
structures”. In: Journal of the London Mathematical Society 771 (2008),

pp. 203-220.

“Jacques Carette et al. “From Reversible Programs to Univalent Universes and
Back”. In: Electr. Notes Theor. Comput. Sci. 336 (2018), pp. 5-25.

32

	Free monoids
	Free commutative monoids
	Applications
	Free symmetric monoidal categories

