Continuations \& Co-exponentials

Vikraman Choudhury
 University of Glasgow

LFCS Seminar, University of Edinburgh
May 9, 2023

Currying

We all know these:

$$
\begin{aligned}
& \text { curry }::((a, b) \rightarrow c) \rightarrow a \rightarrow(b \rightarrow c) \\
& \text { curry } f a b=f(a, b) \\
& \text { uncurry }::(a \rightarrow(b \rightarrow c)) \rightarrow(a, b) \rightarrow c \\
& \text { uncurry } f(a, b)=f a b
\end{aligned}
$$

Currying and Co-currying?

We all know these:

$$
\begin{aligned}
& \text { curry }::((a, b) \rightarrow c) \rightarrow a \rightarrow(b \rightarrow c) \\
& \text { curry } f a b=f(a, b) \\
& \text { uncurry }::(a \rightarrow(b \rightarrow c)) \rightarrow(a, b) \rightarrow c \\
& \text { uncurry } f(a, b)=f a b
\end{aligned}
$$

Puzzle: can we dualize these?

```
cocurry :: (c }->(\textrm{a + b)) }->(\textrm{c}-\textrm{b})->\textrm{a
councurry :: ((c - b) -> a) ->(c -> (a + b))
```


No go

Technical results from category theory say you can't!
If you could (by LAPC/RAPL):

$$
A \times 0 \cong 0
$$

$$
A+1 \cong 1
$$

If these were propositions in logic:

$$
a \wedge \perp \Longleftrightarrow \perp \quad a \vee \top \Longleftrightarrow \top
$$

But as types in a programming language, you'd have:

$$
2 \cong 1+1 \cong 1
$$

You can have a logic with subtraction, but not a programming language!

No go

* Boileau \& Joyal: A cartesian closed and co-cartesian co-closed category is a preorder.
* Abramsky: A *-autonomous category in which the monoidal structure is cartesian is a preorder.

Linear logic comes to the rescue...

* Crolard: Subtractive logic
* Eades, Bellin: Co-intuitionistic Adjoint Logic
* Abramsky: connection between limitative results in proof theory and NoGo theorems in quantum mechanics

But wait, I will show you a magic trick...

Currying and Co-currying

My kingdom for a horse...

$$
\begin{aligned}
& \text { curry }::((a, b) \rightarrow c) \rightarrow a \rightarrow(b \rightarrow c) \\
& \text { curry } f a b=f(a, b) \\
& \text { uncurry }::(a \rightarrow(b \rightarrow c)) \rightarrow(a, b) \rightarrow c \\
& \text { uncurry } f(a, b)=f a b
\end{aligned}
$$

$$
\text { cocurry :: }(c \Rightarrow(a+b)) \rightarrow(c-a) \Rightarrow b
$$

$$
\text { cocurry } f(c, k 1)=\text { Cont } \$ \backslash k 2 \rightarrow \text { runCont (f c) (either k1 k2) }
$$

$$
\text { councurry : : }((c-a) \Rightarrow b) \rightarrow(c \Rightarrow(a+b))
$$

$$
\text { councurry } \mathrm{f} \mathrm{c}=\text { Cont } \$ \backslash \mathrm{k} \rightarrow \text { runCont }(\mathrm{f}(\mathrm{c}, \mathrm{k} . \text { Left)) (k. Right) }
$$

I snuck in two kinds of arrows: \rightarrow, \Rightarrow, but what is $\mathrm{c}-\mathrm{a}$?

Continuations

From Reynolds (1993):
«...settings in which continuations were found useful: They underlie a method of program transformation (into continuation-passing style), a style of definitional interpreter (defining one language by an interpreter written in another language), and a style of denotational semantics (in the sense of Scott and Strachey). In each of these settings, by representing "the meaning of the rest of the program" as a function or procedure, continuations provide an elegant description of a variety of language constructs, including call by value and goto statements.»

From Matt Might's blog:
«...they're always explained with quasi-metaphysical phrases: "time travel", "parallel universes", "the future of the computation".»

Continuation-Passing Style

How I learned continuations in Dan Friedman's C311:
(define factorial
(lambda (n)
(cond

```
[(zero? n) 1]
    [else (* n (factorial (sub1 n)))])))
```

This program isn't tail-recursive!
Continuations to the rescue...

Continuation-Passing Style

We can transform this into CPS:
(define factorial-cps
(lambda (n k)
(cond

```
[(zero? n) (k 1)]
    [else (factorial-cps (sub1 n)
                                    (lambda (v) (k (* n v))))])))
```

(define factorial
(lambda (n)
(factorial-cps $n($ lambda (v) v))))

Delimited Continuations

Types help you see what's going on...

```
factorialCPS :: Int }->\mathrm{ (Int }->\mathrm{ r) }->\textrm{r
factorialCPS n k =
    if n == 0
    then k 1
    else factorialCPS (n - 1) $ \v -> k (n * v)
factorial :: Int }->\mathrm{ Int
factorial n = factorialCPS n $ \v -> v
```

Continuations are encoded as functions: $a \rightarrow r$.

Continuation monad

Monads make this even better!

```
newtype Cont r a = Cont { runCont :: (a }->\textrm{r})->\textrm{r}
return :: a }->\mathrm{ Cont r a
return a = Cont $ \k }->\textrm{k
(>>=) :: Cont r a }->\mathrm{ (a Cont r b) }->\mathrm{ Cont r b
Cont g >>= f = Cont $ \k2 }->\textrm{g $ \a }->\mathrm{ runCont (f a) k2
```

Now rewrite facrorialCPS using the continuation monad...

Continuation monad

Using do notation:

```
factorialCont :: Int }->\mathrm{ Cont r Int
factorialCont n =
    if n == 0
        then return 1
        else do
        v}\leftarrow\mathrm{ factorialCont (n-1)
        return (n * v)
factorial :: Int }->\mathrm{ Int
factorial n = runCont (factorialCont n) $ \v }->
```

This is automatically tail-recursive!
This is CPS without explicitly thinking about continuations as functions.

CPS, formally

There are many ways of formalising CPS:

- Plotkin-style CPS

$$
\mathrm{a} \rightarrow \mathrm{~b} \text { turns into } \mathrm{a} \rightarrow(\mathrm{~b} \rightarrow \mathrm{r}) \rightarrow \mathrm{r} \text {, or a } \rightarrow \text { Cont } \mathrm{r} \mathrm{~b} \text {. }
$$

- Fischer-style CPS
$\mathrm{a} \rightarrow \mathrm{b}$ turns into $(\mathrm{b} \rightarrow \mathrm{r}) \rightarrow(\mathrm{a} \rightarrow \mathrm{r})$.
There are several CPS calculi and connections to classical logic.

Embrace these ideas and take a step further...

Co-exponentials

Allow me to write:

- $a^{*}=a \rightarrow r$
- a continuation for a , or
- a handler for a
- $b-a=\left(b, a^{*}\right)$
- a value of b, with a handler for a, or
- a value of b, with a typed hole for a
- $\mathrm{a} \Rightarrow \mathrm{b}=\mathrm{a} \rightarrow$ Cont r b
- a CPS transformed function $a \rightarrow b$

Now I'll reveal the trick...

Co-exponentials

This is co-currying with subtraction and \Rightarrow :

$$
\begin{aligned}
& \text { cocurry :: }(c \Rightarrow(a+b)) \rightarrow(c-a) \Rightarrow b \\
& \text { cocurry } f(c, k 1)=\text { Cont } \$ \backslash k 2 \rightarrow \\
& \text { runCont }(f c) \$ \text { lcase } \\
& \text { Left } a \rightarrow k 1 \text { a } \\
& \text { Right } b \rightarrow k 2 b
\end{aligned}
$$

```
councurry :: \(((\mathrm{c}-\mathrm{a}) \Rightarrow \mathrm{b}) \rightarrow(\mathrm{c} \Rightarrow(\mathrm{a}+\mathrm{b}))\)
councurry f c = Cont \$ \(\backslash \mathrm{k} \rightarrow\)
    let \(k 1=k\). Left
        \(\mathrm{k} 2=\mathrm{k}\). Right
    in runCont (f (c, k1)) k2
```


Co-exponentials

This is co-currying with all the explicit types:

```
cocurry :: (c C Cont r (a + b)) }->(\textrm{c},\textrm{a}->\textrm{r})->\mathrm{ Cont r b
cocurry f (c, k1) = Cont $ \k2 }
    runCont (f c) $ \case
    Left a }->\mathrm{ k1 a
    Right b }->\mathrm{ k2 b
councurry :: ((c, a }->\mathrm{ r) }->\mathrm{ Cont r b) }->(c->\mathrm{ Cont r (a + b))
councurry f c = Cont $ \k }
    let k1 :: a }->\mathrm{ r
        k1 = k . Left
        k2 :: b }->\mathrm{ r
        k2 = k . Right
    in runCont (f (c, k1)) k2
```


Co-exponentials

It computes this isomorphism...

$$
\begin{aligned}
& c \rightarrow((a+b) \rightarrow r) \rightarrow r \\
\cong & c \rightarrow(a \rightarrow r, b \rightarrow r) \rightarrow r \\
\cong & c \rightarrow(a \rightarrow r) \rightarrow(b \rightarrow r) \rightarrow r \\
\cong & (c, a \rightarrow r) \rightarrow(b \rightarrow r) \rightarrow r
\end{aligned}
$$

From left to right, it splits a continuation for $a+b$.
From right to left, it joins two continuations for a and b.

You can implement these in your favorite programming language if you have currying and sums.

A micrological study of continuations

There is an elegant mathematical theory behind all of this.

The Kleisli category of the continuation monad is co-cartesian co-closed!
It's a miraculous adjunction:

$$
(-) \times R^{X} \dashv X+(-)
$$

This fact (in the dual sense) was known to several experts since the 90s (see slide 44), but it is underappreciated and seems to have been forgotten.

I try to explain this in a more conceptual way (see slide 47).

Co-exponential operators

You can implement these operators in your favorite programming language if you have currying and sums.

Currying gives you eval and uneval (higher-order pairing).

```
id :: a -> a
id a = a
eval :: (a -> b, a) }->\textrm{b
eval = curry id
uneval :: a }->(\textrm{b}->(\textrm{a},\textrm{b})
uneval = uncurry id
```


Co-exponential operators

Dually, co-currying gives you coeval and couneval.

```
idk :: a = a
idk = return
coeval :: b = (a + (b - a))
coeval = councurry idk
couneval ::((a + b) - a) =>b
couneval = cocurry idk
```

coeval creates a choice, couneval annihilates a choice.

Compare: law of excluded middle: • \vdash a + a*
Compare: creation/annihilation operators in differential LL (C., Fiore).

Co-lambda and Co-application

Let's simplify these into simpler combinators...

```
colam :: (a* = b) = (() = (a + b))
colam f = councurry (f . snd)
coapp :: (() = (a + b), a*) = b
coapp (f, k1) = f () >>= couneval . (,k1)
```

No more \rightarrow arrows, now I can work with \Rightarrow arrows directly.

I will extend Moggi's computational metalanguage with these two operators.

Start from a call-by-value lambda calculus.
Add sum types, A^{*}, and two typing rules...

Binding a value gives you a function!

$$
\begin{array}{cc}
\frac{\Gamma, x: A \vdash e: B}{\Gamma \vdash \lambda(x: A) \cdot e: A \Rightarrow B} & \frac{\Gamma \vdash e_{1}: A \Rightarrow B \quad \Gamma \vdash e_{2}: A}{\Gamma \vdash e_{1} e_{2}: B} \\
\frac{\Gamma, x: A^{*} \vdash e: B}{\Gamma \vdash \widetilde{\lambda}\left(x: A^{*}\right) . e: A+B} & \frac{\Gamma \vdash e_{1}: A+B}{\Gamma \vdash \widetilde{e_{1} e_{2}}: B}
\end{array}
$$

Binding a continuation gives you a choice!.

And two call-by-value equations...

$$
\begin{array}{cc}
\frac{\Gamma, x: A \vdash e: B}{\Gamma \vdash(\lambda(x: A) \cdot e) v \equiv e[v / x]: A \Rightarrow B} & \\
& \frac{\Gamma \vdash v: A \Rightarrow B}{\Gamma \vdash \lambda(x: A) \cdot v x \equiv v: A \Rightarrow B} \\
\frac{\Gamma, x: A^{*} \vdash e: B}{\Gamma \vdash\left(\widetilde{\lambda}\left(x: A^{*}\right) \cdot e\right) v \equiv e[v / x]: B} & \Gamma \vdash v: A^{*} \\
\Gamma \vdash \widetilde{\lambda}\left(x: A^{*}\right) \cdot \widetilde{v x} \equiv v: A+B
\end{array}
$$

Or, Freyd categories with Kleisli exponentials \& co-exponentials (see slide 51):

$$
C(J(C \times A), B) \cong U(C, A \Rightarrow B) \quad C\left(A^{*} \cdot B, C\right) \cong C(B, J(A)+C)
$$

This is a fine-grained language for understanding control flow using continuations under the hood.

λ^{*}

- Key ideas
- Main trick: Split values and computations (double negations).
- You can't create continuations using functions, only co-exponentials.
- No need to split contexts, and no polarities necessary.
- Semantics
- It admits weakening and substitution.
- It has operational, categorical, and adequate denotational semantics.
- It is a conservative extension of STLC.
- Axiomatized by closed co-closed Freyd categories.
- Applications
- Combines exponentials and co-exponentials, but is not degenerate.
- Clean encoding of subtractive/co-intuitionistic logics: ${ }^{B} A=B \times A^{*}$.
- Clean language of values and continuations (cf. $\mu \tilde{\mu}, \lambda \mu$, polarities)

Philosophical Musings

Magic tricks are surprising, but once you reveal the trick, they become boring.
What lessons did we learn from this trick?

- No-go theorems
- Trick to getting around them: splitting values and computations.
- We turned products into premonoidal products.
- These are well-known techniques in PL.
- Instead of a programming language, we get a call-by-value programming language.
- Where else can we play this game?

Philosophical Musings

What lessons did we learn from this trick?

- Duality
- There is a deep duality between functions and continuations.
- Therefore, they should enjoy the same ontological status.
- We shouldn't conflate continuations with functions.
- Co-exponentials are a powerful interface, as we will see next.
- Duality is a fashionable trend in PL:

(pairs) products	co-products (sums)
(effects) monads	co-monads (co-effects, purity)
(induction) initial algebras	final co-algebras (co-induction)
(functions) exponentials	co-exponentials (continuations)

Co-exponentials in Action

* Classical Logic \& Control Operators
* Speculative Execution \& Backtracking
* Effect Handlers
* First-order Control Flow

Programming in λ^{*} is like programming in Haskell with monadic operations and two operators: colam, coapp.

Classical logic and control

I can derive classical logic and control operators.
The identity co-function: $\tilde{\lambda}\left(x: A^{*}\right)$. x gives you LEM!

```
lem :: a + a*
lem = colam idk
```

callCC comes from colam!

```
codiag :: a + a -> a
codiag = either id id
```

callCC :: $\left(a^{*} \Rightarrow a\right) \Rightarrow a$
callCC = fmap codiag . colam

Backtracking operators

A toy DSL for backtracking using co-exponentials in Haskell...

```
assumeRight :: ((a }->\mathrm{ r) }->\mathrm{ Cont r b) }->\mathrm{ Cont r (a + b)
assumeRight = colam
resolveRight :: Cont r (a + b) }->(\textrm{a}->\textrm{r})->\mathrm{ Cont r b
resolveRight = coapp
```

A way to swap choices...

```
swap :: (a + b) -> (b + a)
swap = either Right Left
```

Compare: Thielecke's Double-Barrelled CPS

Backtracking operators

Some derived operators:

```
assumeLeft :: ((b -> r) -> Cont r a) }->\mathrm{ Cont r (a + b)
assumeLeft = fmap swap . colam
resolveLeft :: Cont r (a + b) ->(b -> r) -> Cont r a
resolveLeft = coapp . fmap swap
assumeBoth :: ((a }->\textrm{r})->(\textrm{b}->\textrm{r})->\textrm{r})->\mathrm{ Cont r (a + b)
assumeBoth f = assumeRight $ \k1 }->\mathrm{ cont $ \k2 }->\mathrm{ f k1 k2
resolveBoth :: Cont r (a + b) }->(\textrm{a}->\textrm{r})->(\textrm{b}->\textrm{r})->\textrm{r
resolveBoth f k1 = runCont (resolveRight f k1)
```


Backtracking SAT solver

```
data Prop = PVar String | PZero | POne
    | PAnd Prop Prop | POr Prop Prop | PNot Prop
solve :: Env Bool }->\mathrm{ Prop }->\mathrm{ Cont r (Fail + Succ r)
solve env phi =
    case phi of
        PZero }
        assumeLeft $ \succ }
        return ()
    POne }
        assumeRight $ \fail }
```


Demo?

Compare: Jacob Errington's SAT solver, Jules Hedges' SAT solver.

Speculative Execution \& Backtracking

You want to write a program of type a + b...

- Speculative Execution
- You need to make a choice a + b, but you can't commit to a choice Left or Right.
- Speculatively, choose b with assumeRight. Then, assumeRight gives you a free continuation a*. You may or may not use it.
- Do some computation and produce b.

Speculative Execution \& Backtracking

The user of your a + b program wants to execute it...

- Backtracking
- There are two ways to use these sum types: case or resolve.
- If they case on the sum, there are two execution paths:
* When they use Right b , they execute your computation.
* When they use Left a, the system jumps to a top-level continuation.

Speculative Execution \& Backtracking

- Backtracking
- If they use a resolve combinator:
* If they call resolveRight, they have to plugin a continuation a*, producing b. This continuation gets passed in to the environment of the original computation.
* If they call resolveLeft, they have to plugin a continuation b*, and they get an a. This continuation gets spliced into the top-level stack.

Key idea: two continuations for two execution paths.
All this can be translated to $\lambda *$, and the equations of $\lambda *$ validate these informal ideas of speculative execution and backtracking. This is an algebraic axiomatization of control effects and handlers.

Effect handlers

I can derive effect handlers using co-exponential operators.
Well-known to Haskellers: Church-encode the free monad...

```
newtype Free f a = Free { runFree :: forall r. (f r }->\mathrm{ r) }->\mathrm{ Cont r a }
```

There are two continuations to manage: the handler (algebra) $f r \rightarrow r$, and the generator a $\rightarrow r$.

```
colamFree :: Free f a }->\mathrm{ Cont r (f r + a)
colamFree f = colam $ \alg }->\mathrm{ cont $ \gen }
    runCont (runFree f alg) gen
foldFree :: Functor f = (f r }->\textrm{r})->(a->r)->\mathrm{ Free f a }->\textrm{r
foldFree alg gen = reset0 . fmap (either alg gen) . colamFree
```


Demo?

Whither functions?

We've been using higher-order functions to encode continuations.
Do we need to?

Some ideas:

- Kleisli exponentials

From the point of view of Freyd categories:
We don't need U to be cartesian closed, we only need Kleisli exponentials.
But in practice, U is cartesian closed, with a strong monad.

Whither functions?

- Classical encoding

Encode functions $A \rightarrow B$ as $B+A^{*}$.
This gives a CPS-ed function:

$$
C \rightarrow\left(B+A^{*}\right) \cong C \times B^{*} \rightarrow A^{*}
$$

...which is a compromise.

Whither functions?

- First-order languages with co-exponentials

Instead, what if we had a first-order language, and added co-exponentials?
Hasegawa's trick: using functional completeness, split λ-calculus into two first-order calculi: \mathcal{K} and ζ-calculi. This is like an arrow calculus.

Using co-exponentials, I can dualise functional completeness and produce a first-order arrow language with control flow.

Functional Completeness

- Functional Completeness

STLC/CCCs enjoy a functional completeness property (Lambek \& Scott 1986), like the deduction theorem in proof theory.

- to prove $A \rightarrow B$, it is sufficient to prove B assuming A .
- to write a program of type $A \rightarrow B$, it is sufficient to write a program of type B, assuming a free variable of type A.

■ Dual of Functional Completeness
CoCCoCCs enjoy a dual of functional completeness (interpreting co-exponential objects using continuations):

- to prove $A+B$, it is sufficient to prove B assuming A^{*}.
- to write a program of type $A+B$, it is sufficient to write a program of type B , assuming a free continuation for A .

This can be proved by abstract nonsense (see slide 52).

κ / ζ

Hasegawa splits λ-calculus into $\kappa /$ lift and $\zeta /$ pass: these are arrow calculi, arrows have identity and composition, and these operators.

$$
\begin{array}{cl}
\frac{\Gamma \vdash c: 1 \rightsquigarrow C}{\Gamma \vdash \operatorname{lift}_{A}(c): A \rightsquigarrow C \times A} & \frac{\Gamma, x: 1 \rightsquigarrow C \vdash f: A \rightsquigarrow B}{\Gamma \vdash \kappa x^{C} . f: C \times A \rightsquigarrow B} \\
\frac{\Gamma \vdash c: 1 \rightsquigarrow C}{\Gamma \vdash \operatorname{pass}_{B}(c):(C \Rightarrow B) \rightsquigarrow B} & \frac{\Gamma, x: 1 \rightsquigarrow C \vdash f: A \rightsquigarrow B}{\Gamma \vdash \zeta x^{C} \cdot f: A \rightsquigarrow(C \Rightarrow B)}
\end{array}
$$

Equational theory on slide 53.

Dualising...

$$
\begin{array}{cl}
\frac{\Gamma \vdash c: 1 \rightsquigarrow C^{*}}{\Gamma \vdash \operatorname{lift}_{A}^{*}(c): A \rightsquigarrow(A-C)} & \frac{\Gamma, x: 1 \rightsquigarrow C^{*} \vdash f: A \rightsquigarrow B}{\Gamma \vdash \kappa^{*} x^{C} \cdot f:(A-C) \rightsquigarrow B} \\
\frac{\Gamma \vdash c: 1 \rightsquigarrow C^{*}}{\Gamma \vdash \operatorname{pass}_{B}^{*}(c):(C+B) \rightsquigarrow B} & \frac{\Gamma, x: 1 \rightsquigarrow C^{*} \vdash f: A \rightsquigarrow B}{\Gamma \vdash \zeta^{*} x} \cdot f: A \rightsquigarrow(C+B)
\end{array}
$$

This gives you a first-order programming language with control flow operators. If you add natural numbers, you get (first-order) primitive recursion with control flow. What is its expressive power? Can you write genericcount/effcount?

Equational theory on slide 54.

Programming in κ^{*} / ζ^{*}

These operators allow you to do surgery on first-order programs.
With an indeterminate $z: Z^{*}$,

$$
\begin{aligned}
& A \xrightarrow{\operatorname{lift}^{*}(z)} A-Z \xrightarrow{\zeta^{*} z . i d} \mathrm{Z}+(A-\mathrm{Z}) \xrightarrow{\mathrm{Z}+\kappa^{*} z . i d} \mathrm{Z}+A \xrightarrow{\text { pass }^{*}(z)} A \\
& A \xrightarrow{\zeta^{*} z . i d} \mathrm{Z}+A \xrightarrow{\mathrm{Z}+\operatorname{lift}^{*}(z)} \mathrm{Z}+(A-\mathrm{Z}) \xrightarrow{\text { pass }^{*}(z)} A-\mathrm{Z} \xrightarrow{\kappa^{*} z . i d} A
\end{aligned}
$$

Rewrite programs using $\zeta^{*} /$ pass*:

$$
\begin{gathered}
A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D \xrightarrow{e} E \\
A \xrightarrow{f} B \xrightarrow{\zeta^{*} z \cdot g} \mathrm{Z}+C \xrightarrow{h^{\prime}} \mathrm{Z}+D \xrightarrow{\text { pass*}(z)} D \xrightarrow{e} E
\end{gathered}
$$

A mechanism for breakpoints, checkpoints, code pointers, debugging?

Some type isomorphisms

Like Tarski's high-school algebra identities, but with subtraction:

$$
\begin{aligned}
X-0 & \cong X \\
0-X & \cong 0 \\
(X+Y)-Z & \cong(X-Z)+(Y-Z) \\
(X+Z) \Rightarrow Y & \cong(Y-X) \Rightarrow Z
\end{aligned}
$$

These make more sense once you translate them back to STLC with an R.

Lawvere's ∂ operator

Examples of co-Heyting algebras in nature:

* Closed subsets of a topological space
* Subobject lattices of presheaf categories

Following Lawvere, define the boundary operator: $\partial A=A-A$.
These Leibniz maps exist:

$$
\begin{aligned}
& \partial(A \times B) \rightarrow \partial A \times B+A \times \partial B \\
& \partial A \times B+A \times \partial B \rightarrow \partial(A \times B)
\end{aligned}
$$

To make this an iso, however, Lawvere requires a de Morgan law:

$$
(A \times B)^{*} \cong A^{*}+B^{*}
$$

Session Types

I discovered these when studying session types \& classical linear logic using (strict) star-autonomous categories, following Mellies' articles on negation, dialogue categories, chiralities, tensorial logic.

A star-autonomous category is linearly-distributive with appropriate duals.

$$
A \otimes(-) \dashv A^{*} \beta(-) \quad(-) \otimes B^{*} \dashv(-) \ngtr B
$$

This gives: $A \multimap B=A^{*} \ngtr B$, and $A \circ B=A \otimes B^{*}$.

Cut in (H)CP is:

$$
(B \multimap C) \otimes(A \multimap B) \longrightarrow(A \multimap C)
$$

Dually:

$$
(B \circ-C) \mathcal{\gamma}(A \circ-B) \longleftarrow(A \circ-C)
$$

Co-exponentials in disguise

Some places where co-exponentials appear:

* CBV translation of $\mu \tilde{\mu}$ calculus
* Streicher, Reus, Hofmann: Semantics of $\lambda \mu$ calculus
* Thielecke's thesis: Section 4.5
* Selinger's co-control categories

Note: We fixed the result type R, but we can do more if we choose different $R \mathrm{~s}$, e.g. $\Omega^{(-)}: \varepsilon^{o p} \rightarrow \varepsilon$ is monadic.

Conclusion

- Duality

Higher-order functions give you exponentials.
Higher-order continuations give you co-exponentials

- Co-exponential operators
- Algebraic axiomatization of control flow using continuations
- Interpretation of bi-intuitionistic, subtractive, classical logic
- Backtracking and Control operators
- Fine-grained study of effect handlers
- Decomposing functions
- Linear logic gives $A \rightarrow B=!A \multimap B$ and $A \multimap B=A^{*}$ ช B.
- Girardian comonads and Moggi's monads give: $D A \rightarrow$ TB.
- Continuations/co-exponentials give: $A \rightarrow B=A^{*}+B$.

Bonus slides

A micrological study of continuations

Start with a cartesian closed category C with a fixed object R. Since it is selfenriched, we can write Y^{X} for the hom $C(X, Y)$.

The contravariant negation functor is strong self-adjoint on the left.

$$
\begin{aligned}
& R^{(-)}: C^{\text {op }} \rightarrow C \\
& A \mapsto R^{A} \\
& B \xrightarrow{f} A \mapsto R^{A} \xrightarrow{(-) \circ f} R^{B} \\
& C^{o p}\left(R^{X}, Y\right)=C\left(Y, R^{X}\right) \cong C(X \times Y, R) \cong C\left(X, R^{Y}\right)
\end{aligned}
$$

A micrological study of continuations

By (bo, ff) factorisation, $R^{(-)}$splits as follows, C_{R} is the full-image of $R^{(-)}$.

$$
\begin{array}{rlrl}
F_{R}: C^{\mathrm{op}} & \rightarrow C_{R} & G_{R}: C_{R} & \rightarrow C^{\mathrm{op}} \\
A & \mapsto A & A R^{A} \\
B \xrightarrow{f} A & \mapsto R^{A} \xrightarrow{(-) \circ f} R^{B} & R^{A} \xrightarrow{f} R^{B} & \mapsto R^{A} \xrightarrow{f} R^{B}
\end{array}
$$

F_{R} has a left-adjoint: $R^{(-)} \circ G_{R} \dashv F_{R}$.

$$
C^{\mathrm{op}}\left(R^{G_{R}(X)}, Y\right)=C\left(R^{R^{X}}, Y\right) \cong C\left(R^{X}, R^{Y}\right)=C_{R}\left(X, F_{R}(Y)\right)
$$

A micrological study of continuations

If C has co-products, they become products in $C^{\circ p}$, then products in C_{R}.

$$
\begin{aligned}
C_{R}(Z, X+Y) & =C\left(R^{Z}, R^{X+Y}\right) \\
& \cong C\left(R^{Z}, R^{X} \times R^{Y}\right) \\
& \cong C\left(R^{Z}, R^{X}\right) \times C\left(R^{Z}, R^{Y}\right)=C_{R}(Z, X) \times C_{R}(Z, Y)
\end{aligned}
$$

Since G_{R} is ff, it reflects limits.

$$
G^{R}(X+Y)=R^{X+Y} \cong R^{X} \times R^{Y}=G_{R}(X) \times G_{R}(Y)
$$

G_{R} wants to be a cartesian-closed functor.
If $X \Rightarrow Y$ was the exponential in C_{R},

$$
G_{R}(X \Rightarrow Y) \cong G_{R}(Y)^{G_{R}(X)}=\left(R^{Y}\right)^{R^{X}} \cong R^{\Upsilon \times R^{X}}
$$

Hence, $X \Rightarrow Y=Y \times R^{X}$, making G_{R} a cartesian-closed functor.

A micrological study of continuations

Finally, the continuation monad on C is $T_{R}=R^{(-)} \circ R^{(-)}$.
Consider the Kleisli arrows:

$$
C_{T_{R}}(X, Y)=C\left(X, T_{R}(Y)\right)=C\left(X, R^{R^{Y}}\right) \cong C\left(R^{Y}, R^{X}\right)=C_{R}^{\mathrm{op}}(X, Y)
$$

Since C_{R} is cartesian closed, $C_{T_{R}}$ becomes co-cartesian co-closed.

This uses self-enrichment and strength, and can be done more generally in an enriched setting.

Closed co-closed Freyd categories

A distributive closed Freyd category $U \xrightarrow{J} C$ has:

* Kleisli exponentials:

$$
\begin{aligned}
J((-) \times A): U \rightarrow C & \text { has a right adjoint } A \Rightarrow(-): \\
& C(J(C \times A), B) \cong U(C, A \Rightarrow B)
\end{aligned}
$$

Add:

* a function (-)* : $|U| \rightarrow|U|$ on the objects of U
* Kleisli co-exponentials:

$$
\begin{array}{r}
J(A)+(-): C \rightarrow C \text { has a specified left adjoint } A^{*} \cdot(-): \\
C\left(A^{*} \cdot B, C\right) \cong C(B, J(A)+C)
\end{array}
$$

This is a candidate axiomatisation of λ^{*}.

Functional Completeness

For a CCC C :

* $A \times(-): C \rightarrow C$ is a comonad, $(-)^{A}: C \rightarrow C$ is a monad.
\star The Kleisli category $C_{A \times(-)}$ is a CCC (with an indeterminate value $1 \rightarrow A$).
* $C_{A \times(-)}$ and $C_{(-)^{A}}$ are canonically equivalent, by currying.

For a CoCCoCC C :

* $A+(-): C \rightarrow C$ is a monad, ${ }^{A}(-): C \rightarrow C$ is a comonad.
\star The Kleisli category $C_{A_{(-)}}$is a CoCCoCC (with an indeterminate continuation $1 \rightarrow A^{*}$).
* $C_{A_{(-)}}$and $C_{A+(-)}$ are canonically equivalent, by co-currying.

Equational Theory of κ / ζ

Equational theory of κ :

$$
\begin{gathered}
\frac{\Gamma \vdash f: C \times A \rightsquigarrow B}{\Gamma \vdash \kappa x^{C} \cdot\left(f \circ \operatorname{lift}_{A}(x)\right) \equiv f: C \times A \rightsquigarrow B} \\
\frac{\Gamma, x: 1 \rightsquigarrow C \vdash f: A \rightsquigarrow B \quad \Gamma \vdash c: 1 \rightsquigarrow C}{\Gamma \vdash \kappa x^{C} . f \circ \operatorname{lift}_{A}(c) \equiv f[c / x]: A \rightsquigarrow B}
\end{gathered}
$$

Equational theory of ζ :

$$
\begin{gathered}
\frac{\Gamma \vdash f: A \rightsquigarrow(C \Rightarrow B)}{\Gamma \vdash \zeta x^{C} \cdot\left(\operatorname{pass}_{B}(x) \circ f\right) \equiv f: A \rightsquigarrow(C \Rightarrow B)} \\
\frac{\Gamma, x: 1 \rightsquigarrow C \vdash f: A \rightsquigarrow B \quad \Gamma \vdash c: 1 \rightsquigarrow C}{\Gamma \vdash \operatorname{pass}_{B}(c) \circ \zeta x^{C} \cdot f \equiv f[c / x]: A \rightsquigarrow B}
\end{gathered}
$$

Equational Theory of κ^{*} / ζ^{*}

Equational theory of κ^{*} :

$$
\begin{gathered}
\frac{\Gamma \vdash f: A-C \rightsquigarrow B}{\Gamma \vdash \kappa^{*} x^{C} \cdot\left(f \circ \operatorname{lift}_{A}^{*}(x)\right) \equiv f:(A-C) \rightsquigarrow B} \\
\frac{\Gamma, x: 1 \rightsquigarrow C^{*} \vdash f: A \rightsquigarrow B \quad \Gamma \vdash c: 1 \rightsquigarrow C^{*}}{\Gamma \vdash \kappa^{*} x^{C} . f \circ \operatorname{lift}_{A}^{*}(c) \equiv f[c / x]: A \rightsquigarrow B}
\end{gathered}
$$

Equational theory of ζ^{*} :

$$
\begin{gathered}
\frac{\Gamma \vdash f: A \rightsquigarrow(C+B)}{\Gamma \vdash \zeta^{*} x^{C} \cdot\left(\operatorname{pass}_{B}^{*}(x) \circ f\right) \equiv f: A \rightsquigarrow(C+B)} \\
\frac{\Gamma, x: 1 \rightsquigarrow C^{*} \vdash f: A \rightsquigarrow B \quad \Gamma \vdash c: 1 \rightsquigarrow C^{*}}{\Gamma \vdash \operatorname{pass}_{B}^{*}(c) \circ \zeta^{*} x^{C} \cdot f \equiv f[c / x]: A \rightsquigarrow B}
\end{gathered}
$$

