
Continuations & Co-exponentials

Vikraman Choudhury
University of Glasgow

LFCS Seminar, University of Edinburgh
May 9, 2023

Last updated on May 10, 2023 at 12:03

1

Currying
We all know these:

curry :: ((a, b) → c) → a → (b → c)
curry f a b = f (a, b)

uncurry :: (a → (b → c)) → (a, b) → c
uncurry f (a, b) = f a b

2

Currying and Co-currying?
We all know these:

curry :: ((a, b) → c) → a → (b → c)
curry f a b = f (a, b)

uncurry :: (a → (b → c)) → (a, b) → c
uncurry f (a, b) = f a b

Puzzle: can we dualize these?

cocurry :: (c → (a + b)) → (c - b) → a
councurry :: ((c - b) → a) → (c → (a + b))

3

No go
Technical results from category theory say you can't!

If you could (by LAPC/RAPL):

𝐴 × 0 ≅ 0 𝐴 + 1 ≅ 1

If these were propositions in logic:

𝑎 ∧ ⊥ ⟺ ⊥ 𝑎 ∨⊤ ⟺ ⊤

But as types in a programming language, you'd have:

2 ≅ 1 + 1 ≅ 1

You can have a logic with subtraction, but not a programming language!

4

No go
⋆ Boileau & Joyal: A cartesian closed and co-cartesian co-closed category is

a preorder.

⋆ Abramsky: A ∗-autonomous category in which the monoidal structure is
cartesian is a preorder.

Linear logic comes to the rescue…

⋆ Crolard: Subtractive logic

⋆ Eades, Bellin: Co-intuitionistic Adjoint Logic

⋆ Abramsky: connection between limitative results in proof theory and No-
Go theorems in quantum mechanics

But wait, I will show you a magic trick…

5

Currying and Co-currying
My kingdom for a horse…

curry :: ((a, b) → c) → a → (b → c)
curry f a b = f (a, b)

uncurry :: (a → (b → c)) → (a, b) → c
uncurry f (a, b) = f a b

cocurry :: (c ⇒ (a + b)) → (c - a) ⇒ b
cocurry f (c, k1) = Cont $ \k2 → runCont (f c) (either k1 k2)

councurry :: ((c - a) ⇒ b) → (c ⇒ (a + b))
councurry f c = Cont $ \k → runCont (f (c, k . Left)) (k . Right)

I snuck in two kinds of arrows: →, ⇒, but what is c - a?

6

Continuations
From Reynolds (1993):

«…settings in which continuations were found useful: They underlie a
method of program transformation (into continuation-passing style), a
style of definitional interpreter (defining one language by an interpreter
written in another language), and a style of denotational semantics (in
the sense of Scott and Strachey). In each of these settings, by represent
ing “the meaning of the rest of the program” as a function or procedure,
continuations provide an elegant description of a variety of language
constructs, including call by value and goto statements.»»

From Matt Might's blog:

«…they're always explained with quasi-metaphysical phrases: “time travel”,
“parallel universes”, “the future of the computation”.»»

7

Continuation-Passing Style
How I learned continuations in Dan Friedman's C311:

(define factorial
(lambda (n)
(cond

 [(zero? n) 1]
 [else (* n (factorial (sub1 n)))])))

This program isn't tail-recursive!

Continuations to the rescue…

8

Continuation-Passing Style
We can transform this into CPS:

(define factorial-cps
(lambda (n k)
(cond

 [(zero? n) (k 1)]
 [else (factorial-cps (sub1 n)

(lambda (v) (k (* n v))))])))

(define factorial
(lambda (n)
(factorial-cps n (lambda (v) v))))

9

Delimited Continuations
Types help you see what's going on…

factorialCPS :: Int → (Int → r) → r
factorialCPS n k =
 if n == 0
 then k 1
 else factorialCPS (n - 1) $ \v → k (n * v)

factorial :: Int → Int
factorial n = factorialCPS n $ \v → v

Continuations are encoded as functions: 𝑎 → 𝑟.

10

Continuation monad
Monads make this even better!

newtype Cont r a = Cont { runCont :: (a → r) → r }

return :: a → Cont r a
return a = Cont $ \k → k a

(>>=) :: Cont r a → (a → Cont r b) → Cont r b
Cont g >>= f = Cont $ \k2 → g $ \a → runCont (f a) k2

Now rewrite facrorialCPS using the continuation monad…

11

Continuation monad
Using do notation:

factorialCont :: Int → Cont r Int
factorialCont n =
 if n == 0
 then return 1
 else do

v ← factorialCont (n - 1)
 return (n * v)

factorial :: Int → Int
factorial n = runCont (factorialCont n) $ \v → v

This is automatically tail-recursive!

This is CPS without explicitly thinking about continuations as functions.

12

CPS, formally
There are many ways of formalising CPS:

Plotkin-style CPS

a → b turns into a → (b → r) → r, or a → Cont r b.

Fischer-style CPS

a → b turns into (b → r) → (a → r).

There are several CPS calculi and connections to classical logic.

Embrace these ideas and take a step further…

13

Co-exponentials
Allow me to write:

• a* = a → r
– a continuation for a, or
– a handler for a

• b - a = (b, a*)
– a value of b, with a handler for a, or
– a value of b, with a typed hole for a

• a ⇒ b = a → Cont r b
– a CPS transformed function a → b

Now I'll reveal the trick…

14

Co-exponentials
This is co-currying with subtraction and ⇒:

cocurry :: (c ⇒ (a + b)) → (c - a) ⇒ b
cocurry f (c, k1) = Cont $ \k2 →
runCont (f c) $ \case

 Left a → k1 a
 Right b → k2 b

councurry :: ((c - a) ⇒ b) → (c ⇒ (a + b))
councurry f c = Cont $ \k →
 let k1 = k . Left

k2 = k . Right
 in runCont (f (c, k1)) k2

15

Co-exponentials
This is co-currying with all the explicit types:

cocurry :: (c → Cont r (a + b)) → (c, a → r) → Cont r b
cocurry f (c, k1) = Cont $ \k2 →
runCont (f c) $ \case

 Left a → k1 a
 Right b → k2 b

councurry :: ((c, a → r) → Cont r b) → (c → Cont r (a + b))
councurry f c = Cont $ \k →
 let k1 :: a → r

k1 = k . Left
k2 :: b → r
k2 = k . Right

 in runCont (f (c, k1)) k2

16

Co-exponentials
It computes this isomorphism…

c → ((a + b) → r) → r
≅ c → (a → r, b → r) → r
≅ c → (a → r) → (b → r) → r
≅ (c, a → r) → (b → r) → r

From left to right, it splits a continuation for a + b.

From right to left, it joins two continuations for a and b.

You can implement these in your favorite programming language if you have
currying and sums.

17

A micrological study of continuations
There is an elegant mathematical theory behind all of this.

Cop C

CR

R(−)

R(−)

FR GR

⊣

The Kleisli category of the continuation monad is co-cartesian co-closed!

It's a miraculous adjunction:

(−) × 𝑅𝑋 ⊣ 𝑋 + (−)
This fact (in the dual sense) was known to several experts since the 90s (see
slide 44), but it is underappreciated and seems to have been forgotten.

I try to explain this in a more conceptual way (see slide 47).

18

Co-exponential operators
You can implement these operators in your favorite programming language if
you have currying and sums.

Currying gives you eval and uneval (higher-order pairing).

id :: a → a
id a = a

eval :: (a → b, a) → b
eval = curry id

uneval :: a → (b → (a, b))
uneval = uncurry id

19

Co-exponential operators
Dually, co-currying gives you coeval and couneval.

idk :: a ⇒ a
idk = return

coeval :: b ⇒ (a + (b - a))
coeval = councurry idk

couneval :: ((a + b) - a) ⇒ b
couneval = cocurry idk

coeval creates a choice, couneval annihilates a choice.

Compare: law of excluded middle: · ⊢ a + a*

Compare: creation/annihilation operators in differential LL (C., Fiore).

20

Co-lambda and Co-application
Let's simplify these into simpler combinators…

colam :: (a* ⇒ b) ⇒ (() ⇒ (a + b))
colam f = councurry (f . snd)

coapp :: (() ⇒ (a + b), a*) ⇒ b
coapp (f, k1) = f () >>= couneval . (,k1)

No more → arrows, now I can work with ⇒ arrows directly.

I will extend Moggi's computational metalanguage with these two operators.

21

λ*
Start from a call-by-value lambda calculus.

Add sum types, 𝐴∗, and two typing rules…

Binding a value gives you a function!

Γ, x : A ⊢ e : B
Γ ⊢ λ(x : A).e : A ⇒ B

Γ ⊢ e1 : A ⇒ B Γ ⊢ e2 : A
Γ ⊢ e1 e2 : B

Γ, x : A∗ ⊢ e : B

Γ ⊢ λ̃(x : A∗).e : A + B
Γ ⊢ e1 : A + B Γ ⊢ e2 : A∗

Γ ⊢ ẽ1 e2 : B

Binding a continuation gives you a choice!

22

λ*
And two call-by-value equations…

Γ, x : A ⊢ e : B Γ ⊢ v : A
Γ ⊢ (λ(x : A).e) v ≡ e[v/x] : A ⇒ B

Γ ⊢ v : A ⇒ B
Γ ⊢ λ(x : A).v x ≡ v : A ⇒ B

Γ, x : A∗ ⊢ e : B Γ ⊢ v : A∗

Γ ⊢ (λ̃(x : A∗).e) v ≡ e[v/x] : B

Γ ⊢ v : A + B

Γ ⊢ λ̃(x : A∗).ṽ x ≡ v : A + B

Or, Freyd categories with Kleisli exponentials & co-exponentials (see slide 51):

𝒞(𝐽(𝐶 × 𝐴), 𝐵) ≅ 𝒱(𝐶, 𝐴 ⇒ 𝐵) 𝒞(𝐴∗ ⋅ 𝐵, 𝐶) ≅ 𝒞(𝐵, 𝐽(𝐴) + 𝐶)

This is a fine-grained language for understanding control flow using continua
tions under the hood.

23

λ*
Key ideas

Main trick: Split values and computations (double negations).
You can't create continuations using functions, only co-exponentials.
No need to split contexts, and no polarities necessary.

Semantics
It admits weakening and substitution.
It has operational, categorical, and adequate denotational semantics.
It is a conservative extension of STLC.
Axiomatized by closed co-closed Freyd categories.

Applications
Combines exponentials and co-exponentials, but is not degenerate.
Clean encoding of subtractive/co-intuitionistic logics: 𝐵𝐴 = 𝐵 × 𝐴∗.
Clean language of values and continuations (cf. 𝜇 ̃𝜇, 𝜆𝜇, polarities)

24

Philosophical Musings
Magic tricks are surprising, but once you reveal the trick, they become boring.

What lessons did we learn from this trick?

No-go theorems
Trick to getting around them: splitting values and computations.
We turned products into premonoidal products.
These are well-known techniques in PL.
Instead of a programming language, we get a call-by-value programming
language.
Where else can we play this game?

24

Philosophical Musings
What lessons did we learn from this trick?

Duality
There is a deep duality between functions and continuations.
Therefore, they should enjoy the same ontological status.
We shouldn't conflate continuations with functions.
Co-exponentials are a powerful interface, as we will see next.
Duality is a fashionable trend in PL:

(pairs) products co-products (sums)

(effects) monads co-monads (co-effects, purity)

(induction) initial algebras final co-algebras (co-induction)

(functions) exponentials co-exponentials (continuations)

25

Co-exponentials in Action

⋆ Classical Logic & Control Operators

⋆ Speculative Execution & Backtracking

⋆ Effect Handlers

⋆ First-order Control Flow

Programming in 𝜆∗ is like programming in Haskell with monadic operations
and two operators: colam, coapp.

26

Classical logic and control
I can derive classical logic and control operators.

The identity co-function: �̃�(𝑥 : 𝐴∗) . 𝑥 gives you LEM!

lem :: a + a*
lem = colam idk

callCC comes from colam!

codiag :: a + a → a
codiag = either id id

callCC :: (a* ⇒ a) ⇒ a
callCC = fmap codiag . colam

27

Backtracking operators
A toy DSL for backtracking using co-exponentials in Haskell…

assumeRight :: ((a → r) → Cont r b) → Cont r (a + b)
assumeRight = colam

resolveRight :: Cont r (a + b) → (a → r) → Cont r b
resolveRight = coapp

A way to swap choices…

swap :: (a + b) → (b + a)
swap = either Right Left

Compare: Thielecke's Double-Barrelled CPS

28

Backtracking operators
Some derived operators:

assumeLeft :: ((b → r) → Cont r a) → Cont r (a + b)
assumeLeft = fmap swap . colam

resolveLeft :: Cont r (a + b) → (b → r) → Cont r a
resolveLeft = coapp . fmap swap

assumeBoth :: ((a → r) → (b → r) → r) → Cont r (a + b)
assumeBoth f = assumeRight $ \k1 → cont $ \k2 → f k1 k2

resolveBoth :: Cont r (a + b) → (a → r) → (b → r) → r
resolveBoth f k1 = runCont (resolveRight f k1)

29

Backtracking SAT solver
data Prop = PVar String | PZero | POne
 | PAnd Prop Prop | POr Prop Prop | PNot Prop

solve :: Env Bool → Prop → Cont r (Fail + Succ r)
solve env phi =
 case phi of
 PZero →

assumeLeft $ \succ →
 return ()
 POne →

assumeRight $ \fail →
 ...

Demo?
Compare: Jacob Errington's SAT solver, Jules Hedges' SAT solver.

30

Speculative Execution & Backtracking
You want to write a program of type a + b…

Speculative Execution
You need to make a choice a + b, but you can't commit to a choice Left
or Right.
Speculatively, choose b with assumeRight. Then, assumeRight gives you a
free continuation a*. You may or may not use it.
Do some computation and produce b.

31

Speculative Execution & Backtracking
The user of your a + b program wants to execute it…

Backtracking
There are two ways to use these sum types: case or resolve.
If they case on the sum, there are two execution paths:

⋆ When they use Right b, they execute your computation.

⋆ When they use Left a, the system jumps to a top-level continuation.

32

Speculative Execution & Backtracking
Backtracking

If they use a resolve combinator:

⋆ If they call resolveRight, they have to plugin a continuation a*, pro
ducing b. This continuation gets passed in to the environment of the
original computation.

⋆ If they call resolveLeft, they have to plugin a continuation b*, and
they get an a. This continuation gets spliced into the top-level stack.

Key idea: two continuations for two execution paths.

All this can be translated to 𝜆∗, and the equations of 𝜆∗ validate these informal
ideas of speculative execution and backtracking. This is an algebraic axiomati
zation of control effects and handlers.

33

Effect handlers
I can derive effect handlers using co-exponential operators.

Well-known to Haskellers: Church-encode the free monad…

newtype Free f a = Free { runFree :: forall r. (f r → r) → Cont r a }

There are two continuations to manage: the handler (algebra) f r → r, and
the generator a → r.

colamFree :: Free f a → Cont r (f r + a)
colamFree f = colam $ \alg → cont $ \gen →
runCont (runFree f alg) gen

foldFree :: Functor f ⇒ (f r → r) → (a → r) → Free f a → r
foldFree alg gen = reset0 . fmap (either alg gen) . colamFree

Demo?

34

Whither functions?
We've been using higher-order functions to encode continuations.

Do we need to?

Some ideas:

Kleisli exponentials

From the point of view of Freyd categories:

We don't need 𝒱 to be cartesian closed, we only need Kleisli exponentials.

But in practice, 𝒱 is cartesian closed, with a strong monad.

35

Whither functions?
Classical encoding

Encode functions 𝐴 → 𝐵 as 𝐵 + 𝐴∗.

This gives a CPS-ed function:

𝐶 → (𝐵 + 𝐴∗) ≅ 𝐶 × 𝐵∗ → 𝐴∗

…which is a compromise.

36

Whither functions?
First-order languages with co-exponentials

Instead, what if we had a first-order language, and added co-exponentials?

Hasegawa's trick: using functional completeness, split 𝜆-calculus into two
first-order calculi: 𝜅 and 𝜁 -calculi. This is like an arrow calculus.

Using co-exponentials, I can dualise functional completeness and produce
a first-order arrow language with control flow.

37

Functional Completeness
Functional Completeness
STLC/CCCs enjoy a functional completeness property (Lambek & Scott
1986), like the deduction theorem in proof theory.

to prove 𝐴 → 𝐵, it is sufficient to prove B assuming A.
to write a program of type 𝐴 → 𝐵, it is sufficient to write a program of
type B, assuming a free variable of type A.

Dual of Functional Completeness
CoCCoCCs enjoy a dual of functional completeness (interpreting co-expo
nential objects using continuations):

to prove 𝐴+ 𝐵, it is sufficient to prove B assuming 𝐴∗.
to write a program of type 𝐴 + 𝐵, it is sufficient to write a program of
type B, assuming a free continuation for A.

This can be proved by abstract nonsense (see slide 52).

38

𝜿/𝜻
Hasegawa splits 𝜆-calculus into 𝜅/𝗅𝗂𝖿𝗍 and 𝜁/𝗉𝖺𝗌𝗌: these are arrow calculi,
arrows have identity and composition, and these operators.

Γ ⊢ c : 1⇝ C
Γ ⊢ liftA(c) : A⇝ C × A

Γ, x : 1⇝ C ⊢ f : A⇝ B

Γ ⊢ κxC. f : C × A⇝ B

Γ ⊢ c : 1⇝ C
Γ ⊢ passB(c) : (C ⇒ B)⇝ B

Γ, x : 1⇝ C ⊢ f : A⇝ B

Γ ⊢ ζxC. f : A⇝ (C ⇒ B)

Equational theory on slide 53.

39

𝜿∗/𝜻∗
Dualising…

Γ ⊢ c : 1⇝ C∗

Γ ⊢ lift∗A(c) : A⇝ (A − C)

Γ, x : 1⇝ C∗ ⊢ f : A⇝ B

Γ ⊢ κ∗xC. f : (A − C)⇝ B

Γ ⊢ c : 1⇝ C∗

Γ ⊢ pass∗B(c) : (C + B)⇝ B

Γ, x : 1⇝ C∗ ⊢ f : A⇝ B

Γ ⊢ ζ∗xC. f : A⇝ (C + B)

This gives you a first-order programming language with control flow operators.

If you add natural numbers, you get (first-order) primitive recursion with con
trol flow. What is its expressive power? Can you write genericcount/effcount?

Equational theory on slide 54.

40

Programming in 𝜿∗/𝜻∗
These operators allow you to do surgery on first-order programs.

With an indeterminate 𝑧 : 𝑍∗,

𝐴⟶
𝗅𝗂𝖿𝗍∗(𝑧)

𝐴 − 𝑍⟶
𝜁∗𝑧.𝑖𝑑

𝑍 + (𝐴 − 𝑍)⟶
𝑍 + 𝜅∗𝑧.𝑖𝑑

𝑍 + 𝐴⟶
𝗉𝖺𝗌𝗌∗(𝑧)

𝐴

𝐴⟶
𝜁∗𝑧.𝑖𝑑

𝑍 + 𝐴⟶
𝑍 + 𝗅𝗂𝖿𝗍∗(𝑧)

𝑍 + (𝐴 − 𝑍)⟶
𝗉𝖺𝗌𝗌∗(𝑧)

𝐴 − 𝑍⟶
𝜅∗𝑧.𝑖𝑑

𝐴

Rewrite programs using 𝜁∗/𝗉𝖺𝗌𝗌∗:

𝐴⟶
𝑓

𝐵⟶
𝑔

𝐶⟶
ℎ

𝐷⟶
𝑒

𝐸

𝐴⟶
𝑓

𝐵⟶
𝜁∗𝑧.𝑔

𝑍 + 𝐶⟶
ℎ′

𝑍 + 𝐷⟶
𝗉𝖺𝗌𝗌∗(𝑧)

𝐷⟶
𝑒

𝐸

A mechanism for breakpoints, checkpoints, code pointers, debugging?

41

Some type isomorphisms
Like Tarski's high-school algebra identities, but with subtraction:

𝑋 − 0 ≅ 𝑋

0 − 𝑋 ≅ 0

(𝑋 + 𝑌) − 𝑍 ≅ (𝑋 − 𝑍) + (𝑌 − 𝑍)

(𝑋 + 𝑍) ⇒ 𝑌 ≅ (𝑌 − 𝑋) ⇒ 𝑍

These make more sense once you translate them back to STLC with an R.

42

Lawvere's ∂ operator
Examples of co-Heyting algebras in nature:

⋆ Closed subsets of a topological space

⋆ Subobject lattices of presheaf categories

Following Lawvere, define the boundary operator: ∂𝐴 = 𝐴 − 𝐴.

These Leibniz maps exist:

∂(𝐴 × 𝐵) → ∂𝐴 × 𝐵 + 𝐴 × ∂𝐵

∂𝐴 × 𝐵 + 𝐴 × ∂𝐵 → ∂(𝐴 × 𝐵)

To make this an iso, however, Lawvere requires a de Morgan law:

(𝐴 × 𝐵)∗ ≅ 𝐴∗ + 𝐵∗

43

Session Types
I discovered these when studying session types & classical linear logic using
(strict) star-autonomous categories, following Mellies' articles on negation, di
alogue categories, chiralities, tensorial logic.

A star-autonomous category is linearly-distributive with appropriate duals.

𝐴⊗ (−) ⊣ 𝐴∗ &(−) (−) ⊗ 𝐵∗ ⊣ (−) &𝐵

This gives: 𝐴 ⊸ 𝐵 = 𝐴∗ &𝐵, and 𝐴⟜𝐵 = 𝐴⊗ 𝐵∗.

Cut in (H)CP is:

(𝐵 ⊸ 𝐶) ⊗ (𝐴 ⊸ 𝐵)⟶ (𝐴 ⊸ 𝐶)

Dually:

(𝐵⟜𝐶) &(𝐴⟜𝐵)⟵ (𝐴⟜𝐶)

44

Co-exponentials in disguise
Some places where co-exponentials appear:

⋆ CBV translation of 𝜇 ̃𝜇 calculus

⋆ Streicher, Reus, Hofmann: Semantics of 𝜆𝜇 calculus

⋆ Thielecke's thesis: Section 4.5

⋆ Selinger's co-control categories

Note: We fixed the result type 𝑅, but we can do more if we choose different 𝑅s,
e.g. Ω(−) : ℰ𝗈𝗉 → ℰ is monadic.

45

Conclusion
Duality
Higher-order functions give you exponentials.

Higher-order continuations give you co-exponentials

Co-exponential operators
Algebraic axiomatization of control flow using continuations
Interpretation of bi-intuitionistic, subtractive, classical logic
Backtracking and Control operators
Fine-grained study of effect handlers

Decomposing functions
Linear logic gives 𝐴 → 𝐵 = ! 𝐴 ⊸ 𝐵 and 𝐴 ⊸ 𝐵 = 𝐴∗ &𝐵.
Girardian comonads and Moggi's monads give: 𝐷𝐴 → 𝑇𝐵.
Continuations/co-exponentials give: 𝐴 → 𝐵 = 𝐴∗ + 𝐵.

46

Bonus slides

47

A micrological study of continuations
Start with a cartesian closed category 𝒞 with a fixed object 𝑅. Since it is self-
enriched, we can write 𝑌𝑋 for the hom 𝒞(𝑋, 𝑌).

Cop C
R(−)

R(−)

⊣

The contravariant negation functor is strong self-adjoint on the left.

𝑅(−) : 𝒞𝗈𝗉 → 𝒞

𝐴 ↦ 𝑅𝐴

𝐵 →
𝑓
𝐴 ↦ 𝑅𝐴⟶

(−) ∘ 𝑓
𝑅𝐵

𝑠𝑡𝑋,𝑌 : 𝒞(𝑋, 𝑌) → 𝒞𝗈𝗉(𝑅𝑋, 𝑅𝑌)

𝑓 ↦ 𝑅𝑌⟶
(−) ∘ 𝑓

𝑅𝑋

𝒞𝗈𝗉(𝑅𝑋, 𝑌) = 𝒞(𝑌, 𝑅𝑋) ≅ 𝒞(𝑋 × 𝑌, 𝑅) ≅ 𝒞(𝑋, 𝑅𝑌)

48

A micrological study of continuations
By (bo, ff) factorisation, 𝑅(−) splits as follows, 𝒞𝑅 is the full-image of 𝑅(−).

Cop C

CR

R(−)

R(−)

FR GR

⊣

𝐹𝑅 : 𝒞𝗈𝗉 → 𝒞𝑅
𝐴 ↦ 𝐴

𝐵 →
𝑓
𝐴 ↦ 𝑅𝐴⟶

(−) ∘ 𝑓
𝑅𝐵

𝐺𝑅 : 𝒞𝑅 → 𝒞𝗈𝗉

𝐴 ↦ 𝑅𝐴

𝑅𝐴 →
𝑓
𝑅𝐵 ↦ 𝑅𝐴 →

𝑓
𝑅𝐵

𝐹𝑅 has a left-adjoint: 𝑅(−) ∘ 𝐺𝑅 ⊣ 𝐹𝑅.

𝒞𝗈𝗉(𝑅𝐺𝑅(𝑋), 𝑌) = 𝒞(𝑅𝑅𝑋, 𝑌) ≅ 𝒞(𝑅𝑋, 𝑅𝑌) = 𝒞𝑅(𝑋, 𝐹𝑅(𝑌))

49

A micrological study of continuations
If 𝒞 has co-products, they become products in 𝒞𝗈𝗉, then products in 𝒞𝑅.

𝒞𝑅(𝑍, 𝑋 + 𝑌) = 𝒞(𝑅𝑍, 𝑅𝑋+𝑌)

≅ 𝒞(𝑅𝑍, 𝑅𝑋 × 𝑅𝑌)

≅ 𝒞(𝑅𝑍, 𝑅𝑋) × 𝒞(𝑅𝑍, 𝑅𝑌) = 𝒞𝑅(𝑍, 𝑋) × 𝒞𝑅(𝑍, 𝑌)
Since 𝐺𝑅 is ff, it reflects limits.

𝐺𝑅(𝑋 + 𝑌) = 𝑅𝑋+𝑌 ≅ 𝑅𝑋 × 𝑅𝑌 = 𝐺𝑅(𝑋) × 𝐺𝑅(𝑌)
𝐺𝑅 wants to be a cartesian-closed functor.

If 𝑋 ⇒ 𝑌 was the exponential in 𝒞𝑅,

𝐺𝑅(𝑋 ⇒ 𝑌) ≅ 𝐺𝑅(𝑌)𝐺𝑅(𝑋) = (𝑅𝑌)𝑅𝑋 ≅ 𝑅𝑌×𝑅𝑋

Hence, 𝑋 ⇒ 𝑌 = 𝑌 × 𝑅𝑋, making 𝐺𝑅 a cartesian-closed functor.

50

A micrological study of continuations
Finally, the continuation monad on 𝒞 is 𝑇𝑅 = 𝑅(−) ∘ 𝑅(−).

Consider the Kleisli arrows:

𝒞𝑇𝑅(𝑋, 𝑌) = 𝒞(𝑋, 𝑇𝑅(𝑌)) = 𝒞(𝑋, 𝑅𝑅𝑌) ≅ 𝒞(𝑅𝑌, 𝑅𝑋) = 𝒞𝗈𝗉𝑅 (𝑋, 𝑌)

Since 𝒞𝑅 is cartesian closed, 𝒞𝑇𝑅 becomes co-cartesian co-closed.

This uses self-enrichment and strength, and can be done more generally in an
enriched setting.

51

Closed co-closed Freyd categories

A distributive closed Freyd category 𝒱 →
𝐽
𝒞 has:

⋆ Kleisli exponentials:

𝐽((−) × 𝐴) : 𝒱 → 𝒞 has a right adjoint 𝐴 ⇒ (−):
𝒞(𝐽(𝐶 × 𝐴), 𝐵) ≅ 𝒱(𝐶, 𝐴 ⇒ 𝐵)

Add:

⋆ a function (−)∗ : |𝒱| → |𝒱| on the objects of 𝒱

⋆ Kleisli co-exponentials:

𝐽(𝐴) + (−) : 𝒞 → 𝒞 has a specified left adjoint 𝐴∗ ⋅ (−):
𝒞(𝐴∗ ⋅ 𝐵, 𝐶) ≅ 𝒞(𝐵, 𝐽(𝐴) + 𝐶)

This is a candidate axiomatisation of 𝜆∗.

52

Functional Completeness
For a CCC 𝒞 :

⋆ 𝐴 × (−) : 𝒞 → 𝒞 is a comonad, (−)𝐴 : 𝒞 → 𝒞 is a monad.

⋆ The Kleisli category 𝒞𝐴×(−) is a CCC (with an indeterminate value 1 → 𝐴).

⋆ 𝒞𝐴×(−) and 𝒞(−)𝐴 are canonically equivalent, by currying.

For a CoCCoCC 𝒞 :

⋆ 𝐴 + (−) : 𝒞 → 𝒞 is a monad, 𝐴(−) : 𝒞 → 𝒞 is a comonad.

⋆ The Kleisli category 𝒞𝐴(−) is a CoCCoCC (with an indeterminate continu
ation 1 → 𝐴∗).

⋆ 𝒞𝐴(−) and 𝒞𝐴+(−) are canonically equivalent, by co-currying.

53

Equational Theory of 𝜿/𝜻
Equational theory of 𝜅:

Γ ⊢ f : C × A⇝ B

Γ ⊢ κxC.(f ◦ liftA(x)) ≡ f : C × A⇝ B

Γ, x : 1⇝ C ⊢ f : A⇝ B Γ ⊢ c : 1⇝ C

Γ ⊢ κxC. f ◦ liftA(c) ≡ f [c/x] : A⇝ B

Equational theory of 𝜁 :

Γ ⊢ f : A⇝ (C ⇒ B)

Γ ⊢ ζxC.(passB(x) ◦ f) ≡ f : A⇝ (C ⇒ B)

Γ, x : 1⇝ C ⊢ f : A⇝ B Γ ⊢ c : 1⇝ C

Γ ⊢ passB(c) ◦ ζxC. f ≡ f [c/x] : A⇝ B

54

Equational Theory of 𝜿∗/𝜻∗

Equational theory of 𝜅∗:

Γ ⊢ f : A − C⇝ B

Γ ⊢ κ∗xC.(f ◦ lift∗A(x)) ≡ f : (A − C)⇝ B

Γ, x : 1⇝ C∗ ⊢ f : A⇝ B Γ ⊢ c : 1⇝ C∗

Γ ⊢ κ∗xC. f ◦ lift∗A(c) ≡ f [c/x] : A⇝ B

Equational theory of 𝜁∗:

Γ ⊢ f : A⇝ (C + B)

Γ ⊢ ζ∗xC.(pass∗B(x) ◦ f) ≡ f : A⇝ (C + B)

Γ, x : 1⇝ C∗ ⊢ f : A⇝ B Γ ⊢ c : 1⇝ C∗

Γ ⊢ pass∗B(c) ◦ ζ∗xC. f ≡ f [c/x] : A⇝ B

