Free Commutative Monoids in Homotopy Type Theory

Vikraman Choudhury ^{1,2} Marcelo Fiore ² MFPS XXXVIII, Jul 11, 2022

¹University of Glasgow

²University of Cambridge

Relational model of Differential Linear Logic

Path space of free commutative monoids

A commutative monoid is a monoid $(M; \cdot, e)$ with a commutation axiom.

comm : $\forall x, y. x \cdot y = y \cdot x$

A commutative monoid is a monoid $(M; \cdot, e)$ with a commutation axiom.

comm : $\forall x, y. x \cdot y = y \cdot x$

The forgetful functor from CMon to Set has a left adjoint.

 $\mathsf{CMon}_{\mathsf{F}} \left(\begin{array}{c} \neg \\ \neg \\ \downarrow \\ \mathsf{Set} \end{array} \right)$

A commutative monoid is a monoid $(M; \cdot, e)$ with a commutation axiom.

comm : $\forall x, y. x \cdot y = y \cdot x$

The forgetful functor from CMon to Set has a left adjoint.

 $(\mathcal{M}(A), \eta_A : A \to \mathcal{M}(A))$ is the free commutative monoid on A.

A commutative monoid is a monoid $(M; \cdot, e)$ with a commutation axiom.

comm : $\forall x, y. x \cdot y = y \cdot x$

The forgetful functor from CMon to Set has a left adjoint.

 $(\mathcal{M}(A), \eta_A : A \to \mathcal{M}(A))$ is the free commutative monoid on A. It is characterised by the universal property:

$$(-) \circ \eta_A : \mathsf{CMon}(\mathcal{M}(A), M) \xrightarrow{\sim} (A \to M)$$

How do we *constructively* construct $\mathcal{M}(A)$?

How do we *constructively* construct $\mathcal{M}(A)$?

Free monoids are lists.

How do we *constructively* construct $\mathcal{M}(A)$?

Free monoids are lists.

Free commutative monoids are:

- unordered lists, or
- · lists upto permutation of elements, or
- finite-multisets, or
- bags

How do we *constructively* construct $\mathcal{M}(A)$?

Free monoids are lists.

Free commutative monoids are:

- unordered lists, or
- · lists upto permutation of elements, or
- finite-multisets, or
- bags

We want to define them in univalent type theory:

- without assuming decidable equality,
- and prove the universal property.

Construction of the free commutative monoid

Two easy definitions using HITs:

 $ACM(A) :\equiv$ $\eta: A \to ACM(A)$ e: ACM(A) $- \cdot - : ACM(A)^2 \rightarrow ACM(A)$ assoc : $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ unitl : $e \cdot x = x$ unitr : $x \cdot e = x$ comm : $x \cdot y = y \cdot x$ trunc : isSet(ACM(A))

Construction of the free commutative monoid

Two easy definitions using HITs:

 $ACM(A) :\equiv$ $\eta: A \to ACM(A)$ e: ACM(A) $- \cdot - : ACM(A)^2 \rightarrow ACM(A)$ assoc : $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ unitl : $e \cdot x = x$ unitr : $x \cdot e = x$ comm : $x \cdot y = y \cdot x$ trunc : isSet(ACM(A))

 $\frac{sList(A)}{nil : sList(A)}$ $- :: - : A \times sList(A) \rightarrow sList(A)$ swap : x :: y :: xs = y :: x :: xs trunc : isSet(sList(A))

Construction of the free commutative monoid

Two easy definitions using HITs:

 $ACM(A) :\equiv$ $\eta: A \to ACM(A)$ $sList(A) :\equiv$ e: ACM(A) $- \cdot - : ACM(A)^2 \rightarrow ACM(A)$ nil : sList(A)assoc : $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ $- :: - : A \times sList(A) \rightarrow sList(A)$ unitl : $e \cdot x = x$ swap : x :: y :: xs = y :: x :: xsunitr : $x \cdot e = x$ trunc : isSet(sList(A))comm : $x \cdot y = y \cdot x$ trunc : isSet(ACM(A))

Both satisfy the categorical universal property of free comm. monoids. $\mathcal{M}(A) :\equiv \mathsf{ACM}(A) \simeq_{\mathsf{CMon}} \mathsf{sList}(A)$

Free commutative monoid monad

• Monad structure:

$$\eta_{A}: A
ightarrow \mathcal{M}(A)$$

 $\mu_{A}:\equiv \left(\lambda_{(X:A),X}
ight)^{\sharp}: \mathcal{M}(\mathcal{M}(A))
ightarrow \mathcal{M}(A)$

• Functorial action on $f : A \rightarrow B$:

$$\mathcal{M}(f) :\equiv (\lambda(a:A), \eta_B(fa))^{\sharp} : \mathcal{M}(A) \to \mathcal{M}(B)$$

• Monad strength:

$$\sigma_{A,B}: \mathcal{M}(A) \times B \to \mathcal{M}(A \times B) : (as, b) \mapsto \mathcal{M}(\lambda_{(a:A)}, (a, b))(as)$$

$$\tau_{A,B}: A \times \mathcal{M}(B) \to \mathcal{M}(A \times B) : (a, bs) \mapsto \mathcal{M}(\lambda_{(b:B)}, (a, b))(bs)$$

• Commutative monad structure:

$$\begin{array}{c|c} \mathcal{M}(A) \times \mathcal{M}(B) & \stackrel{\sigma_{A,\mathcal{M}(B)}}{\longrightarrow} \mathcal{M}(A \times \mathcal{M}(B)) \\ & & & \downarrow \\ & & & \downarrow \\ & & & \downarrow \\ \mathcal{M}(\mathcal{M}(A) \times B) & \stackrel{\sigma_{A,B}^{\sharp}}{\longrightarrow} \mathcal{M}(A \times B) \end{array}$$

Free commutative monoid monad

• Strong symmetric monoidal functor:

• Length function:

$$\ell_{\mathcal{A}} \coloneqq \mathcal{M}(\lambda_{(a:A)},\star) : \mathcal{M}(\mathcal{A})
ightarrow \mathcal{M}(\mathbf{1})$$

Relational model of Differential Linear Logic

Path space of free commutative monoids

Category of relations

Power objects: $\mathfrak{P} : hSet_i \to hSet_{i+1} : A \longmapsto (A \to hProp_i)$.

Category of relations

Power objects: \mathfrak{P} : hSet_i \rightarrow hSet_{i+1} : $A \mapsto (A \rightarrow hProp_i)$. Power relative monad:

- unit: $\mathcal{L}_A : A \to \mathfrak{P}(A) : a \longmapsto \lambda(x : A). a =_A x$
- extension for $f : A \to \mathfrak{P}(B)$: $f^* : \mathfrak{P}(A) \to \mathfrak{P}(B) : (\alpha, b) \longmapsto \exists_{(a:A)}.f(a, b) \land \alpha(a)$

Category of relations

Power objects: \mathfrak{P} : hSet_i \rightarrow hSet_{i+1} : $A \mapsto (A \rightarrow hProp_i)$. Power relative monad:

• unit: $\mathcal{L}_A : A \to \mathfrak{P}(A) : a \longmapsto \lambda_{(x : A)}. a =_{_A} x$

• extension for
$$f : A \to \mathfrak{P}(B)$$
:
 $f^* : \mathfrak{P}(A) \to \mathfrak{P}(B) : (\alpha, b) \longmapsto \exists (a:A).f(a, b) \land \alpha(a)$

Rel has objects hSets and homs $A \rightarrow B :\equiv A \rightarrow \mathfrak{P}(B)$.

- Rel is dagger compact.
- $(-)_*$: Set \rightarrow Rel maps functions $f : A \rightarrow B$ to relations $\mathcal{L}_B \circ f : A \rightarrow B$.
- $(-)_*$ preserves coproducts, which become biproducts.

Lifting ${\mathcal M}$ to Rel

 $\ensuremath{\mathcal{M}}$ lifts to the cofree commutative comonoid in Rel.

• comonad structure

$$\delta_{A} :\equiv ((\mu_{A})_{*})^{\dagger} : \mathcal{M}(A) \to \mathcal{M}(\mathcal{M}(A))$$

$$\epsilon_{A} :\equiv ((\eta_{A})_{*})^{\dagger} : \mathcal{M}(A) \to A$$

• commutative comonoid structure

$$w_{A} :\equiv ((++_{A})_{*})^{\dagger} : \mathcal{M}(A) \to \mathcal{M}(A) \otimes \mathcal{M}(A)$$

$$k_{A} :\equiv ((\lambda(\times:1). \operatorname{nil})_{*})^{\dagger} : \mathcal{M}(A) \to \mathbf{1}$$

The universal property follows from promonoidal convolution (Day 70).

Lifting ${\mathcal M}$ to Rel

 $\ensuremath{\mathcal{M}}$ lifts to the cofree commutative comonoid in Rel.

• comonad structure

$$\delta_{A} :\equiv ((\mu_{A})_{*})^{\dagger} : \mathcal{M}(A) \to \mathcal{M}(\mathcal{M}(A))$$

$$\epsilon_{A} :\equiv ((\eta_{A})_{*})^{\dagger} : \mathcal{M}(A) \to A$$

• commutative comonoid structure

$$w_{A} :\equiv ((++_{A})_{*})^{\dagger} : \mathcal{M}(A) \to \mathcal{M}(A) \otimes \mathcal{M}(A)$$

$$k_{A} :\equiv ((\lambda(\times:1). \operatorname{nil})_{*})^{\dagger} : \mathcal{M}(A) \to \mathbf{1}$$

The universal property follows from promonoidal convolution (Day 70).

• monoidal structure (Seely isomorphisms)

$$\varphi_{A,B} :\equiv (\epsilon_A \otimes \epsilon_B)_{\sharp} : \mathcal{M}(A) \otimes \mathcal{M}(B) \xrightarrow{\sim} \mathcal{M}(A \otimes B)$$

$$\phi :\equiv (\mathrm{id}_1)_{\sharp} : \mathbf{1} \xrightarrow{\sim} \mathcal{M}(\mathbf{1})$$

Differential Structure

Combinatorics of subsingleton multisets:

- conical-monoid relation: $as + bs = nil \iff as = bs = nil$
- η_A is an embedding: $x =_A y \iff [x] =_{\mathcal{M}(A)} [y]$

•
$$A \simeq \sum_{as:\mathcal{M}(A)} (\ell(as) = 1) \simeq \sum_{as:\mathcal{M}(A)} \sum_{a:A} (as = [a])$$

 $[a] = \mu(s)$ \iff $\exists (t:\mathcal{M}(\mathcal{M}(A))). \ \mu(t) = \operatorname{nil} \land [a] :: t = s$ $[a] = \mathcal{M}(\pi_1)(ps) \land bs = \mathcal{M}(\pi_2)(ps)$ \iff $\exists (b:B). \ bs = [b] \land [(a, b)] = ps$

Differential Structure

Creation map:

$$\eta_A: A \to \mathcal{M}(A)$$

subject to three laws as follows:

The co-Kleisli category of \mathcal{M} :

- has homs $\mathcal{M}(A) \rightarrow B$
- is cartesian closed
- is a cartesian differential category

The co-Kleisli category of \mathcal{M} :

- has homs $\mathcal{M}(A) \to B$
- is cartesian closed
- is a cartesian differential category

These are the set-truncated version of generalised species of structures (Fiore, Gambino, Hyland, Winskel 2008).

Relational model of Differential Linear Logic

Path space of free commutative monoids

Bialgebra law

Every set has a biproduct commutative bialgebra structure.

By the Seely isomorphism, this transfers to the bialgebra law.

where $c := (\langle \pi_2, \pi_1 \rangle)_*$ is the symmetry isomorphism.

Riesz refinement-monoid relation:

$$as + bs = cs + ds$$

$$\iff$$

$$\exists (xs_1, xs_2, ys_1, ys_2: \mathcal{M}(A)). (as = xs_1 + xs_2) \land (bs = ys_1 + ys_2)$$

$$\land (xs_1 + ys_1 = cs) \land (xs_2 + ys_2 = ds)$$

Riesz refinement-monoid relation:

$$as + bs = cs + ds$$

$$\iff$$

$$\exists_{(xs_1, xs_2, ys_1, ys_2: \mathcal{M}(A))}. (as = xs_1 + xs_2) \land (bs = ys_1 + ys_2)$$

$$\land (xs_1 + ys_1 = cs) \land (xs_2 + ys_2 = ds)$$

Commutation relation:

$$a :: as = b :: bs$$

$$\Leftrightarrow$$

$$(a = b \land as = bs) \lor (\exists (cs:\mathcal{M}(A)). as = b :: cs \land a :: cs = bs)$$

This commutation relation comes from the creation/annihilation operators associated with the free commutative monoid construction seen as a combinatorial Fock space (Fiore 2015).

Pointwise equality:

а	as	=	Ь	bs

Pointwise equality:

Generalised swapping operation:

Generalised swapping operation:

Deduction system for multiset equality:

 $\frac{1}{\mathsf{nil} \sim \mathsf{nil}} \quad \mathsf{nil-cong} \quad \frac{a = b \quad as \sim bs}{a :: as \sim b :: bs} \text{ cons-cong}$

$$\frac{as \sim b :: cs \quad a :: cs \sim bs}{a :: as \sim b :: bs} \text{ comm}$$

Deduction system for multiset equality:

 $\frac{1}{\mathsf{nil} \sim \mathsf{nil}} \quad \mathsf{nil-cong} \qquad \qquad \frac{a = b \quad as \sim bs}{a :: as \sim b :: bs} \text{ cons-cong}$

$$\frac{as \sim b :: cs \qquad a :: cs \sim bs}{a :: as \sim b :: bs} \text{ comm}$$

The relation \sim generates the path space of $\mathcal{M}(A)$:

$$(as = bs) \Leftrightarrow \|as \sim bs\|$$
.

The \sim relation is transitive (admits cut):

 $\frac{\textit{as} \sim \textit{bs} \qquad \textit{bs} \sim \textit{cs}}{\textit{as} \sim \textit{cs}}$

The \sim relation is transitive (admits cut):

$${as \sim bs \ bs \sim cs \ as \sim cs}$$

Given two deduction trees, we compute the underlying permutations, compose them, and reify it back to a tree (NbE).

The \sim relation is transitive (admits cut):

$${as \sim bs \ bs \sim cs \ as \sim cs}$$

Given two deduction trees, we compute the underlying permutations, compose them, and reify it back to a tree (NbE).

$$\mathsf{vec} \,:\, \mathcal{L}(\mathcal{A}) \,\,\simeq\,\, ig(\sum_{\ell : \mathbb{N}} \mathsf{Fin}_\ell o \mathcal{A} ig) \,:\, \mathsf{list}$$

$$(m, f) \approx_A (n, g) :\equiv (\phi : \operatorname{Fin}_m \xrightarrow{\sim} \operatorname{Fin}_n) \times (f = g \circ \phi)$$
.

For $as, bs : \mathcal{L}(A)$, we have

eval :
$$as \sim_A bs \rightarrow \operatorname{vec}(as) \approx_A \operatorname{vec}(bs)$$

and, for $(m, f), (n, g) : \left(\sum_{\ell:\mathbb{N}} \operatorname{Fin}_{\ell} \to A\right)$, we have quote : $(m, f) \approx_{\mathcal{A}} (n, g) \to \operatorname{list}(m, f) \sim_{\mathcal{A}} \operatorname{list}(n, g)$

Commuted-list construction

The composite $A \to \mathcal{L}(A) \to \mathcal{L}(A)_{/\bar{\sim}_A}$ is the free comm. monoid on A.

Commuted-list construction

The composite $A \to \mathcal{L}(A) \to \mathcal{L}(A)_{/\bar{\sim}_A}$ is the free comm. monoid on A. Alternatively, we can define another HIT with a conditional path constructor comm.

 $\underline{cList(A)} :\equiv \\ nil : cList(A) \\ - :: - : A \times cList(A) \rightarrow cList(A) \\ comm : \{a \ b : A\}\{as \ bs \ cs : cList(A)\} \\ \rightarrow (as = b :: cs) \rightarrow (a :: cs = bs) \\ \rightarrow a :: as = b :: bs \\ trunc : isSet(cList(A))$

Epilogue

Summary:

• Different constructions of free commutative monoids:

 $\mathsf{ACM}(A) \simeq_{\mathsf{CMon}} \mathsf{sList}(A) \simeq_{\mathsf{CMon}} \mathcal{L}(A)_{/\bar{\sim}_A} \simeq_{\mathsf{CMon}} \mathsf{cList}(A)$

- Formal construction of the relational model of differential linear logic
- Constructive combinatorics of free commutative monoids:
 - Subsingleton multisets
 - Conical and Refinement-monoid relations
 - Commutation relation
 - Characterisation of the path space
- More details in the paper and formalisation!

Epilogue

Summary:

• Different constructions of free commutative monoids:

 $\mathsf{ACM}(A) \simeq_{\mathsf{CMon}} \mathsf{sList}(A) \simeq_{\mathsf{CMon}} \mathcal{L}(A)_{/\bar{\sim}_A} \simeq_{\mathsf{CMon}} \mathsf{cList}(A)$

- Formal construction of the relational model of differential linear logic
- Constructive combinatorics of free commutative monoids:
 - Subsingleton multisets
 - Conical and Refinement-monoid relations
 - Commutation relation
 - Characterisation of the path space
- More details in the paper and formalisation!

Future work:

- Generalise to free symmetric monoidal groupoids
- Construction of the bicategory of generalised species of structures over groupoids and its differential structure