
Free Commutative Monoids

in Homotopy Type Theory

Vikraman Choudhury 1,2 Marcelo Fiore 2

MFPS XXXVIII, Jul 11, 2022

1University of Glasgow

2University of Cambridge

1



Outline

Free commutative monoids

Relational model of Differential Linear Logic

Path space of free commutative monoids

2



Free commutative monoids

A commutative monoid is a monoid (M; ·, e) with a commutation axiom.

comm : ∀x , y . x · y = y · x

The forgetful functor from CMon to Set has a left adjoint.

CMon

Set

UF ⊣

M(A) M

A

f ♯

ηA
f

(M(A), ηA : A → M(A)) is the free commutative monoid on A.

It is characterised by the universal property:

(−) ◦ ηA : CMon(M(A),M)
∼−→ (A → M)

3



Free commutative monoids

A commutative monoid is a monoid (M; ·, e) with a commutation axiom.

comm : ∀x , y . x · y = y · x

The forgetful functor from CMon to Set has a left adjoint.

CMon

Set

UF ⊣

M(A) M

A

f ♯

ηA
f

(M(A), ηA : A → M(A)) is the free commutative monoid on A.

It is characterised by the universal property:

(−) ◦ ηA : CMon(M(A),M)
∼−→ (A → M)

3



Free commutative monoids

A commutative monoid is a monoid (M; ·, e) with a commutation axiom.

comm : ∀x , y . x · y = y · x

The forgetful functor from CMon to Set has a left adjoint.

CMon

Set

UF ⊣

M(A) M

A

f ♯

ηA
f

(M(A), ηA : A → M(A)) is the free commutative monoid on A.

It is characterised by the universal property:

(−) ◦ ηA : CMon(M(A),M)
∼−→ (A → M)

3



Free commutative monoids

A commutative monoid is a monoid (M; ·, e) with a commutation axiom.

comm : ∀x , y . x · y = y · x

The forgetful functor from CMon to Set has a left adjoint.

CMon

Set

UF ⊣

M(A) M

A

f ♯

ηA
f

(M(A), ηA : A → M(A)) is the free commutative monoid on A.

It is characterised by the universal property:

(−) ◦ ηA : CMon(M(A),M)
∼−→ (A → M)

3



Free commutative monoid

How do we constructively construct M(A)?

Free monoids are lists.

Free commutative monoids are:

• unordered lists, or

• lists upto permutation of elements, or

• finite-multisets, or

• bags

We want to define them in univalent type theory:

• without assuming decidable equality,

• and prove the universal property.

4



Free commutative monoid

How do we constructively construct M(A)?

Free monoids are lists.

Free commutative monoids are:

• unordered lists, or

• lists upto permutation of elements, or

• finite-multisets, or

• bags

We want to define them in univalent type theory:

• without assuming decidable equality,

• and prove the universal property.

4



Free commutative monoid

How do we constructively construct M(A)?

Free monoids are lists.

Free commutative monoids are:

• unordered lists, or

• lists upto permutation of elements, or

• finite-multisets, or

• bags

We want to define them in univalent type theory:

• without assuming decidable equality,

• and prove the universal property.

4



Free commutative monoid

How do we constructively construct M(A)?

Free monoids are lists.

Free commutative monoids are:

• unordered lists, or

• lists upto permutation of elements, or

• finite-multisets, or

• bags

We want to define them in univalent type theory:

• without assuming decidable equality,

• and prove the universal property.

4



Construction of the free commutative monoid

Two easy definitions using HITs:

ACM(A) :≡

η : A → ACM(A)

e : ACM(A)

− · − : ACM(A)2 → ACM(A)

assoc : x · (y · z) = (x · y) · z
unitl : e · x = x

unitr : x · e = x

comm : x · y = y · x
trunc : isSet(ACM(A))

sList(A) :≡

nil : sList(A)

− :: − : A× sList(A) → sList(A)

swap : x :: y :: xs = y :: x :: xs

trunc : isSet(sList(A))

Both satisfy the categorical universal property of free comm. monoids.

M(A) :≡ ACM(A) ≃CMon sList(A)

5



Construction of the free commutative monoid

Two easy definitions using HITs:

ACM(A) :≡

η : A → ACM(A)

e : ACM(A)

− · − : ACM(A)2 → ACM(A)

assoc : x · (y · z) = (x · y) · z
unitl : e · x = x

unitr : x · e = x

comm : x · y = y · x
trunc : isSet(ACM(A))

sList(A) :≡

nil : sList(A)

− :: − : A× sList(A) → sList(A)

swap : x :: y :: xs = y :: x :: xs

trunc : isSet(sList(A))

Both satisfy the categorical universal property of free comm. monoids.

M(A) :≡ ACM(A) ≃CMon sList(A)

5



Construction of the free commutative monoid

Two easy definitions using HITs:

ACM(A) :≡

η : A → ACM(A)

e : ACM(A)

− · − : ACM(A)2 → ACM(A)

assoc : x · (y · z) = (x · y) · z
unitl : e · x = x

unitr : x · e = x

comm : x · y = y · x
trunc : isSet(ACM(A))

sList(A) :≡

nil : sList(A)

− :: − : A× sList(A) → sList(A)

swap : x :: y :: xs = y :: x :: xs

trunc : isSet(sList(A))

Both satisfy the categorical universal property of free comm. monoids.

M(A) :≡ ACM(A) ≃CMon sList(A)
5



Free commutative monoid monad

• Monad structure:

ηA : A → M(A)

µA :≡ (λ(x :A). x)♯ : M(M(A)) → M(A)

• Functorial action on f : A → B:

M(f ) :≡ (λ(a :A). ηB(fa))
♯ : M(A) → M(B)

• Monad strength:

σA,B : M(A)× B → M(A× B) : (as, b) 7→ M(λ(a :A). (a, b))(as)

τA,B : A×M(B) → M(A× B) : (a, bs) 7→ M(λ(b :B). (a, b))(bs)

• Commutative monad structure:

M(A)×M(B) M(A×M(B))

M(M(A)× B) M(A× B)

σA,M(B)

τA,B
♯τM(A),B

σA,B
♯

6



Free commutative monoid monad

• Strong symmetric monoidal functor:

M(A)×M(B) M(A+ B)

M(A+ B)×M(A+ B)

≃

M(ı1)×M(ı2) ⊕(A+B)

1 M(0)
λ(x : 1).∅0

≃

• Length function:

ℓA :≡ M(λ(a :A). ⋆) : M(A) → M(1)

7



Outline

Free commutative monoids

Relational model of Differential Linear Logic

Path space of free commutative monoids

8



Category of relations

Power objects: P : hSeti → hSeti+1 : A 7−→ (A → hPropi ).

Power relative monad:

• unit:よA : A → P(A) : a 7−→ λ(x :A). a =A x

• extension for f : A → P(B):

f ∗ : P(A) → P(B) : (α, b) 7−→ ∃(a:A).f (a, b) ∧ α(a)

Rel has objects hSets and homs A −7→ B :≡ A → P(B).

• Rel is dagger compact.

• (−)∗ : Set → Rel maps functions f : A → B to relations

よB ◦ f : A −7→ B.

• (−)∗ preserves coproducts, which become biproducts.

9



Category of relations

Power objects: P : hSeti → hSeti+1 : A 7−→ (A → hPropi ).

Power relative monad:

• unit:よA : A → P(A) : a 7−→ λ(x :A). a =A x

• extension for f : A → P(B):

f ∗ : P(A) → P(B) : (α, b) 7−→ ∃(a:A).f (a, b) ∧ α(a)

Rel has objects hSets and homs A −7→ B :≡ A → P(B).

• Rel is dagger compact.

• (−)∗ : Set → Rel maps functions f : A → B to relations

よB ◦ f : A −7→ B.

• (−)∗ preserves coproducts, which become biproducts.

9



Category of relations

Power objects: P : hSeti → hSeti+1 : A 7−→ (A → hPropi ).

Power relative monad:

• unit:よA : A → P(A) : a 7−→ λ(x :A). a =A x

• extension for f : A → P(B):

f ∗ : P(A) → P(B) : (α, b) 7−→ ∃(a:A).f (a, b) ∧ α(a)

Rel has objects hSets and homs A −7→ B :≡ A → P(B).

• Rel is dagger compact.

• (−)∗ : Set → Rel maps functions f : A → B to relations

よB ◦ f : A −7→ B.

• (−)∗ preserves coproducts, which become biproducts.

9



Lifting M to Rel

M lifts to the cofree commutative comonoid in Rel.

• comonad structure

δA :≡ ((µA)∗)
† : M(A) −7→ M(M(A))

ϵA :≡ ((ηA)∗)
† : M(A) −7→ A

• commutative comonoid structure

wA :≡ ((++A)∗)
† : M(A) −7→ M(A)⊗M(A)

kA :≡ ((λ(x : 1). nil)∗)
† : M(A) −7→ 1

The universal property follows from promonoidal convolution (Day 70).

• monoidal structure (Seely isomorphisms)

φA,B :≡ (ϵA ⊗ ϵB)♯ : M(A)⊗M(B)
∼−7→ M(A⊗ B)

ϕ :≡ (id1)♯ : 1
∼−7→ M(1)

10



Lifting M to Rel

M lifts to the cofree commutative comonoid in Rel.

• comonad structure

δA :≡ ((µA)∗)
† : M(A) −7→ M(M(A))

ϵA :≡ ((ηA)∗)
† : M(A) −7→ A

• commutative comonoid structure

wA :≡ ((++A)∗)
† : M(A) −7→ M(A)⊗M(A)

kA :≡ ((λ(x : 1). nil)∗)
† : M(A) −7→ 1

The universal property follows from promonoidal convolution (Day 70).

• monoidal structure (Seely isomorphisms)

φA,B :≡ (ϵA ⊗ ϵB)♯ : M(A)⊗M(B)
∼−7→ M(A⊗ B)

ϕ :≡ (id1)♯ : 1
∼−7→ M(1)

10



Differential Structure

Combinatorics of subsingleton multisets:

• conical-monoid relation: as ++ bs = nil ⇐⇒ as = bs = nil

• ηA is an embedding: x =A y ⇐⇒ [x ] =M(A) [y ]

• A ≃
∑

as:M(A) (ℓ(as) = 1) ≃
∑

as:M(A)

∑
a:A (as = [a])

•
[a] = µ(s)

⇐⇒
∃(t:M(M(A))). µ(t) = nil ∧ [a] :: t = s

•
[a] = M(π1)(ps) ∧ bs = M(π2)(ps)

⇐⇒
∃(b:B). bs = [b] ∧

[
(a, b)

]
= ps

11



Differential Structure

Creation map:

ηA : A −7→ M(A)

subject to three laws as follows:

M(A)

A A

p ϵp
η

p
id

A M(A) M2(A)

A⊗ 1 M(A)⊗M(A) M2(A)⊗M2(A)

p
η

−≃

pδ

p
η⊗e

p
η⊗δ

−m

A⊗M(B) M(A)⊗M(B)

A⊗ B M(A⊗ B)

p
η⊗id

−id⊗ϵ −φ

p
η

12



MRel

The co-Kleisli category of M:

• has homs M(A) −7→ B

• is cartesian closed

• is a cartesian differential category

These are the set-truncated version of generalised species of structures

(Fiore, Gambino, Hyland, Winskel 2008).

13



MRel

The co-Kleisli category of M:

• has homs M(A) −7→ B

• is cartesian closed

• is a cartesian differential category

These are the set-truncated version of generalised species of structures

(Fiore, Gambino, Hyland, Winskel 2008).

13



Outline

Free commutative monoids

Relational model of Differential Linear Logic

Path space of free commutative monoids

14



Bialgebra law

Every set has a biproduct commutative bialgebra structure.

A+ A A A+ A

A+ A+ A+ A A+ A+ A+ A

∇p ∆p
∆+∆p ∇+∇p

idA+c+idA
p

By the Seely isomorphism, this transfers to the bialgebra law.

M(A)⊗M(A) M(A) M(A)⊗M(A)

M(A)⊗M(A)⊗M(A)⊗M(A) M(A)⊗M(A)⊗M(A)⊗M(A)

mp wp

w⊗w p m⊗mp

idM(A)⊗c⊗idM(A)
p

where c :≡ (⟨π2, π1⟩)∗ is the symmetry isomorphism.

15



Commutation relation

Riesz refinement-monoid relation:

as ++ bs = cs ++ ds

⇐⇒
∃(xs1,xs2,ys1,ys2:M(A)). (as = xs1 ++ xs2) ∧ (bs = ys1 ++ ys2)

∧ (xs1 ++ ys1 = cs) ∧ (xs2 ++ ys2 = ds)

Commutation relation:

a :: as = b :: bs

⇔
(a = b ∧ as = bs) ∨ (∃(cs:M(A)). as = b :: cs ∧ a :: cs = bs)

This commutation relation comes from the creation/annihilation operators

associated with the free commutative monoid construction seen as a

combinatorial Fock space (Fiore 2015).

16



Commutation relation

Riesz refinement-monoid relation:

as ++ bs = cs ++ ds

⇐⇒
∃(xs1,xs2,ys1,ys2:M(A)). (as = xs1 ++ xs2) ∧ (bs = ys1 ++ ys2)

∧ (xs1 ++ ys1 = cs) ∧ (xs2 ++ ys2 = ds)

Commutation relation:

a :: as = b :: bs

⇔
(a = b ∧ as = bs) ∨ (∃(cs:M(A)). as = b :: cs ∧ a :: cs = bs)

This commutation relation comes from the creation/annihilation operators

associated with the free commutative monoid construction seen as a

combinatorial Fock space (Fiore 2015).

16



Commutation relation

Pointwise equality:

a as = b bs

a = b as = bs

17



Commutation relation

Pointwise equality:

a as = b bs

a = b as = bs

17



Commutation relation

Generalised swapping operation:

a as = b bs

a b cs = b a cs

18



Commutation relation

Generalised swapping operation:

a as = b bs

a b cs = b a cs

18



Deduction system

Deduction system for multiset equality:

nil-cong
nil ∼ nil

a = b as ∼ bs
cons-cong

a :: as ∼ b :: bs

as ∼ b :: cs a :: cs ∼ bs
comm

a :: as ∼ b :: bs

The relation ∼ generates the path space of M(A):

(as = bs) ⇔ ∥as ∼ bs∥ .

19



Deduction system

Deduction system for multiset equality:

nil-cong
nil ∼ nil

a = b as ∼ bs
cons-cong

a :: as ∼ b :: bs

as ∼ b :: cs a :: cs ∼ bs
comm

a :: as ∼ b :: bs

The relation ∼ generates the path space of M(A):

(as = bs) ⇔ ∥as ∼ bs∥ .

19



Deduction system

The ∼ relation is transitive (admits cut):

as ∼ bs bs ∼ cs
as ∼ cs

Given two deduction trees, we compute the underlying permutations,

compose them, and reify it back to a tree (NbE).

vec : L(A) ≃
(∑

ℓ:N Finℓ → A
)
: list

(m, f ) ≈A (n, g) :≡ (ϕ : Finm
∼−→ Finn)× (f = g ◦ ϕ) .

For as, bs : L(A), we have

eval : as ∼A bs → vec(as) ≈A vec(bs)

and, for (m, f ), (n, g) :
(∑

ℓ:N Finℓ → A
)
, we have

quote : (m, f ) ≈A (n, g) → list(m, f ) ∼A list(n, g)

20



Deduction system

The ∼ relation is transitive (admits cut):

as ∼ bs bs ∼ cs
as ∼ cs

Given two deduction trees, we compute the underlying permutations,

compose them, and reify it back to a tree (NbE).

vec : L(A) ≃
(∑

ℓ:N Finℓ → A
)
: list

(m, f ) ≈A (n, g) :≡ (ϕ : Finm
∼−→ Finn)× (f = g ◦ ϕ) .

For as, bs : L(A), we have

eval : as ∼A bs → vec(as) ≈A vec(bs)

and, for (m, f ), (n, g) :
(∑

ℓ:N Finℓ → A
)
, we have

quote : (m, f ) ≈A (n, g) → list(m, f ) ∼A list(n, g)

20



Deduction system

The ∼ relation is transitive (admits cut):

as ∼ bs bs ∼ cs
as ∼ cs

Given two deduction trees, we compute the underlying permutations,

compose them, and reify it back to a tree (NbE).

vec : L(A) ≃
(∑

ℓ:N Finℓ → A
)
: list

(m, f ) ≈A (n, g) :≡ (ϕ : Finm
∼−→ Finn)× (f = g ◦ ϕ) .

For as, bs : L(A), we have

eval : as ∼A bs → vec(as) ≈A vec(bs)

and, for (m, f ), (n, g) :
(∑

ℓ:N Finℓ → A
)
, we have

quote : (m, f ) ≈A (n, g) → list(m, f ) ∼A list(n, g)

20



Commuted-list construction

The composite A → L(A) → L(A)/ s∼A
is the free comm. monoid on A.

Alternatively, we can define another HIT with a conditional path

constructor comm.

cList(A) :≡

nil : cList(A)

− :: − : A× cList(A) → cList(A)

comm : {a b : A}{as bs cs : cList(A)}
→ (as = b :: cs) → (a :: cs = bs)

→ a :: as = b :: bs

trunc : isSet(cList(A))

21



Commuted-list construction

The composite A → L(A) → L(A)/ s∼A
is the free comm. monoid on A.

Alternatively, we can define another HIT with a conditional path

constructor comm.

cList(A) :≡

nil : cList(A)

− :: − : A× cList(A) → cList(A)

comm : {a b : A}{as bs cs : cList(A)}
→ (as = b :: cs) → (a :: cs = bs)

→ a :: as = b :: bs

trunc : isSet(cList(A))

21



Epilogue

Summary:

• Different constructions of free commutative monoids:

ACM(A) ≃CMon sList(A) ≃CMon L(A)/ s∼A
≃CMon cList(A)

• Formal construction of the relational model of differential linear logic

• Constructive combinatorics of free commutative monoids:

• Subsingleton multisets

• Conical and Refinement-monoid relations

• Commutation relation

• Characterisation of the path space

• More details in the paper and formalisation!

Future work:

• Generalise to free symmetric monoidal groupoids

• Construction of the bicategory of generalised species of structures

over groupoids and its differential structure

22



Epilogue

Summary:

• Different constructions of free commutative monoids:

ACM(A) ≃CMon sList(A) ≃CMon L(A)/ s∼A
≃CMon cList(A)

• Formal construction of the relational model of differential linear logic

• Constructive combinatorics of free commutative monoids:

• Subsingleton multisets

• Conical and Refinement-monoid relations

• Commutation relation

• Characterisation of the path space

• More details in the paper and formalisation!

Future work:

• Generalise to free symmetric monoidal groupoids

• Construction of the bicategory of generalised species of structures

over groupoids and its differential structure
22


	Free commutative monoids
	Relational model of Differential Linear Logic
	Path space of free commutative monoids

