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Free commutative monoids

Relational model of Differential Linear Logic

Path space of free commutative monoids
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Free commutative monoids

A commutative monoid is a monoid (M; ·, e) with a commutation axiom.

comm : ∀x , y . x · y = y · x

The forgetful functor from CMon to Set has a left adjoint.

CMon

Set

UF ⊣

M(A) M

A

f ♯

ηA
f

(M(A), ηA : A → M(A)) is the free commutative monoid on A.

It is characterised by the universal property:

(−) ◦ ηA : CMon(M(A),M)
∼−→ (A → M)
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Free commutative monoid

How do we constructively construct M(A)?

Free monoids are lists.

Free commutative monoids are:

• unordered lists, or

• lists upto permutation of elements, or

• finite-multisets, or

• bags

We want to define them in univalent type theory:

• without assuming decidable equality,

• and prove the universal property.
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Construction of the free commutative monoid

Two easy definitions using HITs:

ACM(A) :≡

η : A → ACM(A)

e : ACM(A)

− · − : ACM(A)2 → ACM(A)

assoc : x · (y · z) = (x · y) · z
unitl : e · x = x

unitr : x · e = x

comm : x · y = y · x
trunc : isSet(ACM(A))

sList(A) :≡

nil : sList(A)

− :: − : A× sList(A) → sList(A)

swap : x :: y :: xs = y :: x :: xs

trunc : isSet(sList(A))

Both satisfy the categorical universal property of free comm. monoids.

M(A) :≡ ACM(A) ≃CMon sList(A)
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Free commutative monoid monad

• Monad structure:

ηA : A → M(A)

µA :≡ (λ(x :A). x)♯ : M(M(A)) → M(A)

• Functorial action on f : A → B:

M(f ) :≡ (λ(a :A). ηB(fa))
♯ : M(A) → M(B)

• Monad strength:

σA,B : M(A)× B → M(A× B) : (as, b) 7→ M(λ(a :A). (a, b))(as)

τA,B : A×M(B) → M(A× B) : (a, bs) 7→ M(λ(b :B). (a, b))(bs)

• Commutative monad structure:

M(A)×M(B) M(A×M(B))

M(M(A)× B) M(A× B)

σA,M(B)

τA,B
♯τM(A),B

σA,B
♯
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Free commutative monoid monad

• Strong symmetric monoidal functor:

M(A)×M(B) M(A+ B)

M(A+ B)×M(A+ B)

≃

M(ı1)×M(ı2) ⊕(A+B)

1 M(0)
λ(x : 1).∅0

≃

• Length function:

ℓA :≡ M(λ(a :A). ⋆) : M(A) → M(1)
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Outline

Free commutative monoids

Relational model of Differential Linear Logic

Path space of free commutative monoids
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Category of relations

Power objects: P : hSeti → hSeti+1 : A 7−→ (A → hPropi ).

Power relative monad:

• unit:よA : A → P(A) : a 7−→ λ(x :A). a =A x

• extension for f : A → P(B):

f ∗ : P(A) → P(B) : (α, b) 7−→ ∃(a:A).f (a, b) ∧ α(a)

Rel has objects hSets and homs A −7→ B :≡ A → P(B).

• Rel is dagger compact.

• (−)∗ : Set → Rel maps functions f : A → B to relations

よB ◦ f : A −7→ B.

• (−)∗ preserves coproducts, which become biproducts.
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Lifting M to Rel

M lifts to the cofree commutative comonoid in Rel.

• comonad structure

δA :≡ ((µA)∗)
† : M(A) −7→ M(M(A))

ϵA :≡ ((ηA)∗)
† : M(A) −7→ A

• commutative comonoid structure

wA :≡ ((++A)∗)
† : M(A) −7→ M(A)⊗M(A)

kA :≡ ((λ(x : 1). nil)∗)
† : M(A) −7→ 1

The universal property follows from promonoidal convolution (Day 70).

• monoidal structure (Seely isomorphisms)

φA,B :≡ (ϵA ⊗ ϵB)♯ : M(A)⊗M(B)
∼−7→ M(A⊗ B)

ϕ :≡ (id1)♯ : 1
∼−7→ M(1)
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Differential Structure

Combinatorics of subsingleton multisets:

• conical-monoid relation: as ++ bs = nil ⇐⇒ as = bs = nil

• ηA is an embedding: x =A y ⇐⇒ [x ] =M(A) [y ]

• A ≃
∑

as:M(A) (ℓ(as) = 1) ≃
∑

as:M(A)

∑
a:A (as = [a])

•
[a] = µ(s)

⇐⇒
∃(t:M(M(A))). µ(t) = nil ∧ [a] :: t = s

•
[a] = M(π1)(ps) ∧ bs = M(π2)(ps)

⇐⇒
∃(b:B). bs = [b] ∧

[
(a, b)

]
= ps
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Differential Structure

Creation map:

ηA : A −7→ M(A)

subject to three laws as follows:

M(A)

A A

p ϵp
η

p
id

A M(A) M2(A)

A⊗ 1 M(A)⊗M(A) M2(A)⊗M2(A)

p
η

−≃

pδ

p
η⊗e

p
η⊗δ

−m

A⊗M(B) M(A)⊗M(B)

A⊗ B M(A⊗ B)

p
η⊗id

−id⊗ϵ −φ

p
η
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MRel

The co-Kleisli category of M:

• has homs M(A) −7→ B

• is cartesian closed

• is a cartesian differential category

These are the set-truncated version of generalised species of structures

(Fiore, Gambino, Hyland, Winskel 2008).
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Bialgebra law

Every set has a biproduct commutative bialgebra structure.

A+ A A A+ A

A+ A+ A+ A A+ A+ A+ A

∇p ∆p
∆+∆p ∇+∇p

idA+c+idA
p

By the Seely isomorphism, this transfers to the bialgebra law.

M(A)⊗M(A) M(A) M(A)⊗M(A)

M(A)⊗M(A)⊗M(A)⊗M(A) M(A)⊗M(A)⊗M(A)⊗M(A)

mp wp

w⊗w p m⊗mp

idM(A)⊗c⊗idM(A)
p

where c :≡ (⟨π2, π1⟩)∗ is the symmetry isomorphism.
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Commutation relation

Riesz refinement-monoid relation:

as ++ bs = cs ++ ds

⇐⇒
∃(xs1,xs2,ys1,ys2:M(A)). (as = xs1 ++ xs2) ∧ (bs = ys1 ++ ys2)

∧ (xs1 ++ ys1 = cs) ∧ (xs2 ++ ys2 = ds)

Commutation relation:

a :: as = b :: bs

⇔
(a = b ∧ as = bs) ∨ (∃(cs:M(A)). as = b :: cs ∧ a :: cs = bs)

This commutation relation comes from the creation/annihilation operators

associated with the free commutative monoid construction seen as a

combinatorial Fock space (Fiore 2015).
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Commutation relation

Pointwise equality:

a as = b bs

a = b as = bs
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Commutation relation

Generalised swapping operation:

a as = b bs

a b cs = b a cs
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Deduction system

Deduction system for multiset equality:

nil-cong
nil ∼ nil

a = b as ∼ bs
cons-cong

a :: as ∼ b :: bs

as ∼ b :: cs a :: cs ∼ bs
comm

a :: as ∼ b :: bs

The relation ∼ generates the path space of M(A):

(as = bs) ⇔ ∥as ∼ bs∥ .
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Deduction system

The ∼ relation is transitive (admits cut):

as ∼ bs bs ∼ cs
as ∼ cs

Given two deduction trees, we compute the underlying permutations,

compose them, and reify it back to a tree (NbE).

vec : L(A) ≃
(∑

ℓ:N Finℓ → A
)
: list

(m, f ) ≈A (n, g) :≡ (ϕ : Finm
∼−→ Finn)× (f = g ◦ ϕ) .

For as, bs : L(A), we have

eval : as ∼A bs → vec(as) ≈A vec(bs)

and, for (m, f ), (n, g) :
(∑

ℓ:N Finℓ → A
)
, we have

quote : (m, f ) ≈A (n, g) → list(m, f ) ∼A list(n, g)
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Commuted-list construction

The composite A → L(A) → L(A)/ s∼A
is the free comm. monoid on A.

Alternatively, we can define another HIT with a conditional path

constructor comm.

cList(A) :≡

nil : cList(A)

− :: − : A× cList(A) → cList(A)

comm : {a b : A}{as bs cs : cList(A)}
→ (as = b :: cs) → (a :: cs = bs)

→ a :: as = b :: bs

trunc : isSet(cList(A))

21



Commuted-list construction

The composite A → L(A) → L(A)/ s∼A
is the free comm. monoid on A.

Alternatively, we can define another HIT with a conditional path

constructor comm.

cList(A) :≡

nil : cList(A)

− :: − : A× cList(A) → cList(A)

comm : {a b : A}{as bs cs : cList(A)}
→ (as = b :: cs) → (a :: cs = bs)

→ a :: as = b :: bs

trunc : isSet(cList(A))

21



Epilogue

Summary:

• Different constructions of free commutative monoids:

ACM(A) ≃CMon sList(A) ≃CMon L(A)/ s∼A
≃CMon cList(A)

• Formal construction of the relational model of differential linear logic

• Constructive combinatorics of free commutative monoids:

• Subsingleton multisets

• Conical and Refinement-monoid relations

• Commutation relation

• Characterisation of the path space

• More details in the paper and formalisation!

Future work:

• Generalise to free symmetric monoidal groupoids

• Construction of the bicategory of generalised species of structures

over groupoids and its differential structure
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