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The Duality of Abstraction

ANONYMOUS AUTHOR(S)

In this paper, we develop and study the following perspective – just as higher-order functions give exponentials,

higher-order continuations give coexponentials. From this, we design a language that combines exponentials

and coexponentials, producing a duality of abstraction.

We formalise this language by giving an extension of a call-by-value simply-typed lambda-calculus with

coexponentials. We develop the semantics of this language using the axiomatic structure of continuations,

which we use to produce an equational theory, that justifies control effects. We use this to derive the classical

control operators and computational interpretation of classical logic, and encode common patterns of control

flow using continuations, such as backtracking and exceptions. We further develop duals of first-order arrow

languages using coexponentials. Finally, we discuss the implementation of this duality as control operators in

programming, and develop their applications.

Additional Key Words and Phrases: duality, continuations, categorical semantics, type theory, effects

1 INTRODUCTION
There are several well-known dualities of computation: (1) values and continuations [Filinski 1989;

Parigot 1992], (2) call-by-value and call-by-name [Selinger 2001; Wadler 2003], (3) expressions

and contexts [Curien and Herbelin 2000], (4) producers and consumers [Girard 1991], (5) client

and server in session types [Honda 1993], (6) strict and lazy evaluation, (7) products and sums,

(8) effects (monads) and coeffects (comonads).

This paper presents and develops a different perspective: a duality of abstraction – of currying

and cocurrying. Abstraction is at the heart of functional programming – it gives us higher-order

functions that we build by lambda-abstraction, and we apply them to arguments using function

application. This is well understood using the currying/uncurrying isomorphism:

(𝐶 ×𝐴) → 𝐵 � 𝐶 → (𝐴⇒ 𝐵) (1)

The forwards direction is currying, which gives lambda abstraction. In an environment 𝐶 with

a free variable of type 𝐴, if we can produce a value of type 𝐵, we can lambda-abstract and get a

function 𝐴⇒ 𝐵 in the environment 𝐶 . The function type 𝐴⇒ 𝐵 is an exponential object, which

comes with a (universal) evaluation function eval𝐴,𝐵 : (𝐴⇒ 𝐵) ×𝐴 → 𝐵 by uncurrying, allowing

us to apply a function to an argument.

Duality is a fashionable trend in programming languages – can we dualise currying? Formally,

this is a matter of reversing the arrows, turning the products into sums (coproducts), and turning

the function type⇒ into a⇐ type:

(𝐴⇐ 𝐵) → 𝐶 � 𝐵 → (𝐶 +𝐴) (2)

Continuing the analogy with currying, the dual type 𝐴⇐ 𝐵 (or coexponential object) should come

with a (universal) coevaluation function coeval𝐴,𝐵 : 𝐵 → 𝐴 + (𝐴⇐ 𝐵). Programming languages

have both products and sums, could we also have both ⇒ and ⇐?

Loch Ness mystery. For good reasons, this mysterious 𝐴⇐ 𝐵 type is not found in programming

languages. The categorically minded reader will recognise these two natural isomorphisms as

coming from the adjunctions of cartesian closure, and cocartesian coclosure:

(−) ×𝐴 ⊣ (−)𝐴 (−)𝐴 ⊣ (−) +𝐴 (3)
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Exponential objects (−)𝐴 give right ajoints to product functors (−) × 𝐴, and coexponential ob-

jects
(−)𝐴 give left adjoints to coproduct functors 𝐴 + (−). If C is a cartesian closed category (a

model for the simply-typed lambda-calculus), then formally Cop
becomes a cocartesian coclosed

category. But, combining cartesian closure and cocartesian coclosure in the same category leads to

a degeneracy – this is well-known as Joyal’s lemma, and is explained in various forms by several

authors (Lambek and Scott 1988, p.67; Girard 2011, § 7.A.4; Crolard 2001, thm 1.14; Abramsky 2012;

Eades III and Bellin 2017).

If (−) × 𝐴 has a right adjoint, it ought to preserve the initial object, and if 𝐴 + (−) has a left
adjoint, it ought to preserve the terminal object, giving these isomorphisms:

0 ×𝐴 � 0 𝐴 + 1 � 1 (4)

In logic, the first isomorphism is the tautology ⊥ ∧ 𝐴 ↔ ⊥, and the second isomorphism is

⊤∨𝐴 ↔ ⊤, which is well-known in classical logic. However, by Curry-Howard, in a programming

language this means that the booleans would have no computational content – Bool � 1 + 1 � 1,

leading to a degenerate language.

𝐴

1 1 + 1 1𝜄1 𝜄2

𝑓 𝑔[ 𝑓 ,𝑔]

Since 1 + 1 � 1, it is a terminal object, making 𝜄1, 𝜄2 : 1 → 1 + 1 equal. If 𝑓 , 𝑔 : 1 → 𝐴 are any

two closed programs, then 𝑓 = [𝑓 , 𝑔] ◦ 𝜄1 = [𝑓 , 𝑔] ◦ 𝜄2 = 𝑔. This makes the language degenerate –

all closed programs of the same type are equal! This remark of Girard from The Blind Spot [2011,

§ 7.A.5, page 155] is worth quoting:

Digression: Loch Ness categories. A certain number of “solutions” to the degener-

acy (inconsistency at layer -2) circulate. All those I have seen being faulty, I will not

indulge in a teratology, especially since some people devote an incredible amount of

energy in the production of new erroneous solutions. A few remarks:

• If there is a category-theoretic solution, one is liable to provide a legible category.

And not to formulate the adjunction rules – say – of a professed «subtraction»

– the typical connective of the category-theoretic bricoleurs – supposedly acting

like implication, but on the left. Hence, one must provide a concrete category, or

at least a translation into a system already having a non-degenerate category-

theoretic interpretation. What the experts in «subtraction» carefully avoid

doing. . .with good reasons.

This degeneracy is often used to motivate linear logic, weakening the strict universal properties

of limits and colimits, or that “we must separate the two worlds” [Eades III and Bellin 2017],

leading to mixed linear-non-linear logics. These arguments are also important to the foundations

of quantum theory [Abramsky 2012], which require no cloning and duplication, fitting nicely with

linear logic. In this work, we refute this conventional wisdom – we do not embrace linear logic, yet

produce a programming language with a computational interpretation, that has both currying and

cocurrying!

Continuations and Classical Logic. Continuations are fundamental to many of the dualities of

computation – they are dual to values (as in Parigot [1992]’s 𝜆𝜇), and they are fundamental to the

duality of call-by-value and call-by-name (Selinger 2001; Wadler 2003), and the duality of programs

and contexts (Curien andHerbelin [2000]’s 𝜇�̃�). Continuations give a computational interpretation of

2



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

The Duality of Abstraction POPL’24, January 17–19, 2024, London, UK

classical logic, as discovered by Griffin [1989]. The classical nature of the isomorphism in equation (4)

suggests that we should think about them using continuations. The duality in this paper also exploits

continuations!

The ambitious reader might want to stop at this point, and try to implement the ⇐ type and

the isomorphism in equation (2), using their favorite control operators. This is the main insight on

which this paper builds. Semantically-minded readers might want to skip ahead to § 4 to see what

the trick is about.

Outline and Contributions. This work is inspired by Filinski [1989]’s symmetric 𝜆-calculus,

and various dual calculi for values and continuations [Parigot 1992; Curien and Herbelin 2000].

The semantics is inspired by the works of Hofmann [1995], Thielecke [1997], Streicher and Reus

[1998], and Hofmann and Streicher [2002], and in particular Selinger [2001]. Compared to other

dual calculi, we only restrict ourselves to a call-by-value language. The duality is a semantic one –

of cartesian closure and cocartesian coclosure – which produces a syntactic duality of 𝜆 and ˜𝜆!

• We present a 𝜆 ˜𝜆 calculus, which exhibits two dual abstraction mechanisms: 𝜆 and ˜𝜆. They

bind values and covalues, respectively, and we call them functions and cofunctions, re-

spectively, which exhibit currying and cocurrying. Functions have a function type, and

cofunctions have a sum(!) type – the interaction of usual sums and cofunctions allows

values and covalues to interact. We introduce this language by examples in § 2, and give a

formal presentation in § 3.

• We develop the semantics of 𝜆 ˜𝜆 in two different ways, in § 4. First, we use continuations

for covalues, and give a CPS semantics, essentially by pulling it out of a hat. Second, we

perform a micrological study of continuations, understanding their axiomatic categorical

structure, and how it produces exponentials and coexponentials. We interpret our language

using this categorical semantics in § 5, and show that it matches the CPS semantics.

• Using our denotational semantics, we develop an equational theory for our language, in § 6.

The equational theory is designed in stages, first giving the axiomatic equations for currying

and cocurrying, and then adding equations for control effects, which are validated by our

semantics. We discuss the soundness, completeness, and axiomatics of these equations.

• Just as 𝜆 calculi can be split into first-order fragments, we split
˜𝜆 into first-order arrow calculi,

by dualizing functional completeness, in § 7. These languages are understood operationally

using continuations as handlers.

• Unlike other dual calculi for continuations, ours is a natural deduction calculus. This means

that the
˜𝜆 duality readily adapts to a control operators, which we can implement or retrofit

in real-world programming languages. In § 8, we implement them in SML and Haskell, and

discuss our applications.

We include a partial formalisation of our languages in Agda, and implementations in SML and

Haskell, as supplementary material. Some details are skipped in the main text, and included in the

supplementary appendix.

2 DUALITY BY EXAMPLE
We illustrate the duality of abstraction by programming in a hypothetical language, whose syntax

is similar to a typed programming language (like ML or Haskell).

Functions andCofunctions. The language has values and covalues, and functions and cofunctions.
Functions fn bind values, and cofunctions cofn bind covalues. Covalues have co types, and cofn

binds a covalue, producing a cofunction which has (surprisingly!) a sum type, written as a + b.

Coapplication is written as f @ k, which supplies a covalue to a sum type.

3
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fun ex1 (f : int → string) (g : int + string) : int → int + string =

fn (x : int) ⇒
cofn (k : co int) ⇒

if x = 0 then g @ k else f x

The program ex1 take two arguments: a function f : int → string, and a sum (or cofunction)

g : int + string, and returns something of type int → int + string. The body of the program

first introduces a lambda using fn (x : int), that binds a value x : int creating a function whose

domain is an int. The body of the program needs to produce something of type int + string.

This is introduced by a colambda cofn (k : co int) which binds a covalue k : co int, creating a

cofunction. The value x is used in the body by applying the function f, and the covalue k is used in

the body by applying the sum g. Here are two sample executions of the program ex1:

ex1 Int.toString (INR "0") 0

⇝ cofn (k : co int) ⇒ if 0 = 0 then (INR "0") @ k else Int.toString 0

⇝ cofn (k : co int) ⇒ (INR "0") @ k

⇝ INR "0"

(5)

ex1 Int.toString (INL 1) 1

⇝ cofn (k : co int) ⇒ if 1 = 0 then (INL 1) @ k else Int.toString 1

⇝ cofn (k : co int) ⇒ Int.toString 1

⇝ cofn (k : co int) ⇒ "1"

⇝ INR "1"

(6)

The standard rules for capture-avoiding substitutions apply to both functions and cofunctions, which

we perform implicitly. In equation (5), the body of the inner cofunction reduces by following the left

branch of the conditional, which produces the cofunction cofn (k : co int) ⇒ (INR "0") @ k.

This reduces by eta-conversion to the value INR "0". Dually, in equation (6), the body of the inner

cofunction reduces by following the right branch of the conditional, which produces the cofunction

cofn (k : co int) ⇒ Int.toString 1. The body of this cofunction doesn’t use the covalue k,

causing it to collapse(!), producing INR "1".

This example could’ve been written without any of this technology, just using standard sums:

fun ex1 (f : int → string) (g : int + string) : int → int + string =

fn (x : int) ⇒
if x = 0 then g else INR (f x)

What is then the point of cofunctions? We will see that, INL/INR produce ordinary sums, but

cofunctions produce “Faustian” sums, which have control effects!

Exceptional cofunctions. Consider a simple program which multiplies the elements in a list

(from [Harper et al. 1993]):

fun mult (l : list int) : int =

let fun loop [] = 1

| loop (h :: t) = h * loop t

in loop l

end

4
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If l contains a 0 anywhere in the list, the program will always return 0, but performing several

vacuous multiplications along the way.

mult [1, 2, 0, 3, 4] ⇝ 1 * (2 * (0 * (3 * (4 * 1))))

⇝ 1 * (2 * (0 * (3 * 4)))

⇝ 1 * (2 * (0 * 12))

⇝ 1 * (2 * 0)

⇝ 1 * 0

⇝ 0

A naive way to avoid vacuous multiplications is to stop computing as soon as we see a 0:

fun mult (l : list int) : int =

let fun loop [] = 1

| loop (0 :: _) = 0

| loop (h :: t) = h * loop t

in loop l

end

which proceeds as:

mult [1, 2, 0, 3, 4] ⇝ 1 * (2 * 0)

⇝ 1 * 0

⇝ 0

This avoids traversing the list once it notices a 0, but still vacuously multiplies by 0 as it finishes

the rest of the computation. Ideally, we want to avoid multiplying once we see a 0, and treat it as

an exceptional value.

As type theorists, we know about sum types, and we can use them to model two branches of

computation – a value on the right is a normal value, and a value on the left is an exceptional value.

We do multiplications on the right, but we return a 0 on the left. To understand the behavior of the

program, we additionally print a trace as we’re computing.

fun mult (l : list int) : int + int =

let fun loop [] = INR 1

| loop (0 :: _) = INL 0

| loop (h :: t) = trace ("at " ^ Int.toString h)

(mapRight (fn x ⇒ h * x) (loop t))

in loop l

end

This computes as:

mult [1, 2, 0, 3, 4]

⇝ mapRight (fn x ⇒ 1 * x) (mapRight (fn x ⇒ 2 * x) (loop [0, 3, 4]))

⇝ mapRight (fn x ⇒ 1 * x) (mapRight (fn x ⇒ 2 * x) (INL 0))

⇝ mapRight (fn x ⇒ 1 * x) (INL 0)

⇝ INL 0

printing the trace: "at 2", then "at 1".

This encoding using sums is almost the behavior we want, which avoids vacuous multiplications,

but still traverses up to the top of the list once it hits a 0, printing the trace. What we really want is

5
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to short-circuit the computation, abandoning the computation in the right branch, and jumping to

the left branch with a 0. We can do this using cofunctions.

fun mult (l : list int) : int + int =

cofn (k : co int) ⇒
let fun loop [] = 1

| loop (0 :: _) = (INL 0) @ k

| loop (h :: t) = trace ("at " ^ Int.toString h) (h * loop t)

in loop l

end

cofn binds a covalue k : int co, and speculatively executes its body, assuming that its computing

the right branch of the sum. The bound covalue k allows one to backtrack and “jump with an (int)

argument” to the left branch. The loop function is the same as before, except when it hits a 0, it

coapplies INL 0 to the bound covalue k, jumping to the left branch and exiting the program. This

computes as:

mult [1, 2, 0, 3, 4]

⇝ cofn (k : int co) ⇒ loop [1, 2, 0, 3, 4]

⇝ cofn (k : int co) ⇒ 1 * loop [2, 0, 3, 4]

⇝ cofn (k : int co) ⇒ 1 * (2 * loop [0, 3, 4])

⇝ cofn (k : int co) ⇒ 1 * (2 * (INL 0) @ k)

⇝ INL 0

and prints no trace!

Algebra of cofunctions. Constant functions, like fn (x : int) ⇒ 0, when applied to any argu-

ment, will always return the value 0. Similarly, we have constant cofunctions, like cofn (k : co int) ⇒ 0,

which are right-biased sums – but unlike functions (lambdas), they aren’t frozen thunks – for

example, constant cofunctions collapse and reduce to an ordinary right sum.

cofn (k : co a) ⇒ b ⇝ INR b

The identity cofunction, which returns the covalue it binds, produces something of this type – a

choice between a value and a covalue:

let val (idc : a + co a) = cofn (k : co a) ⇒ k

This is a cofunction that doesn’t reduce on its own, not until you observe it by pattern matching!

The «subtraction» type a - b is the “proper” dual of the function type a → b, and is defined as a

product of a value and a covalue:

type a - b = a * co b

The subtraction type is derived from covalues and is not included as a primitive type in our language,

for «good reasons». The duality is witnessed by currying and cocurrying – our motivating example,

6
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which can be implemented using our cofunction operations (also see ftoc and ctof):

fun curry (f : (c * a) → b) =

fn x ⇒ fn y ⇒ f (x, y)

fun uncurry (f : c → (a → b)) =

fn (x, y) ⇒ f x y

fun cocurry (f : c → a + b) : (c - a) → b =

fn (c, k) ⇒ (f c) @ k

fun councurry (f : (c - a) → b) : c → a + b =

fn c ⇒ cofn k ⇒ f (c, k)

Subtraction and sums interplay in the following way:

fun coeval (x : a) : b + (a - b) = cofn (k : co b) ⇒ (x, k)

fun couneval (f : (b + a) - b) : a = (#1 f) @ (#2 f)

The type of coeval can be seen as a generalised version of LEM. Since cofunctions are just sums,

they have the familiar case construct for pattern matching. Using case, we can do operations on

both sides of the sum, for example, we can define a cocomposition of subtractive types:

fun cocompose (f : a - c) : (b - c) + (a - b) =

case coeval (#1 f) of

INL b ⇒ INL (b, #2 f)

| INR (a, k) ⇒ INR (a, k)

Value-Covalue interaction. We could produce a choice between a value and a covalue out of

nothing, on both sides of the sum – but what if we had access to a value and covalue at the same

time, i.e., a - a? We can throw – lifting the value to the left, then coapplying the covalue, producing

b out of nothing.

fun throw (p : a - a) : b = (INL (#1 p)) @ k

Dually(!), the sum type a + a can be collapsed to an a:

fun codiag (s : a + a) : a = case s of INL a ⇒ a | INR a ⇒ a

To a continuations afficionado, these operators will look familiar:

fun callcc (f : co a → a) : a =

codiag (cofn (k : co a) ⇒ f k)

fun call/cc (f : (a → b) → a) : a =

codiag (cofn (k : co a) ⇒
f (fn a ⇒ throw (a, k)))

3 SYNTAX
We present a formal calculus called 𝜆 ˜𝜆 which exhibits abstraction and coabstraction.

3.1 Typing
The syntax and typing of 𝜆 ˜𝜆 is presented in figure 1. It is a simply-typed lambda calculus with

products, functions, and sums, extended with covalue types, coabstraction, and coapplication.

In figure 1a, we have the usual type constructors for unit, products, coproducts, and function

types. Additionally, we have a dual type constructor �̃�, which is the type of covalues. Expressions

7
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in our language are the usual ones, but additionally we have colambdas and coapplications, which

are indicated by a bar over the lambda and application symbols. Lambda and colambda are binding

forms – lambdas can bind variables of any type, but colambdas only bind variables of dual types.

Similar to application, coapplication coapplies the second argument to the first. Importantly, this

is a call-by-value language – values are a subset of expressions, and substitution is restricted to

values.

Raw terms are meaningless, and the meaningful terms are the well-typed ones deduced by

the typing judgement, generated by the typing rules in figure 1c. Unit and products have the

usual rightist typing rules. Sums have the usual leftist typing rules, with two injections, and a

case construct. As is standard, functions are rightist – they are introduced by lambda abstraction,

binding a value 𝑥 : 𝐴 in the body 𝑒 : 𝐵, producing a term of type 𝐴⇒ 𝐵. Application eliminates a

function, which applies a function 𝐴⇒ 𝐵 to an 𝐴, producing a 𝐵.

Now we add two more rules which look completely symmetric – colambda binds a covalue

𝑥 : �̃� in the body 𝑒 : 𝐵, producing a term of type 𝐴 + 𝐵, which we’ve been calling cofunctions. To

eliminate a cofunction, we have coapplication, which applies a cofunction 𝐴 + 𝐵 to a term of type

�̃�, cancelling out the 𝐴 and producing a 𝐵. This is a rightist rule for sums. Sums have bipartisan

status – the interaction of leftist case and rightist
˜𝜆 leads to control effects!

The slogan for the typing rule for functions is “binding a value produces a function”. Dually, the

slogan for the typing rule for cofunctions is “binding a covalue produces a choice”. The typing rule

for application says “a function consumes a value”, and the typing rule for coapplication says “a

cofunction consumes a covalue”. When a function binds a value 𝐴, it can use the bound variable

𝑥 : 𝐴 in its body in any way that satisfies typing constraints, and similarly, when a cofunction

binds a covalue �̃�, it can use the bound variable 𝑥 : �̃� in its body in any way that satisfies typing

constraints.

We can think of colambdas as producing a right-biased choice, bargaining for a covalue for the

left side of the choice. The informal idea behind a covalue is that it opens up a “channel” for the

left side of the sum, which can be used by the body of the cofunction to “escape” to the left, despite

having made a preference for the right side of the sum. This “escape” mechanism is a way for values

and covalues to interact, or using our analogy, a way to send a value on the channel the covalue

opened up. This is explained by the computational behavior of coapplication.

3.2 Weakening and Substitution
Since we have introduced new binders in our language, we need to show that weakening and

substitution are still admissible. Unlike mixed substitution in CPS calculi, we only need call-by-

value substitution. We describe the weakening and substitution rules for 𝜆 ˜𝜆 in figure 2, and define

substitution on raw terms in definition 3.3 and definition 3.2. This is standard, and when substituting

under a binder, we do a renaming of the bound variable by extending the substitution. Finally, we

prove admissibility of weakening and substitution in theorem 3.1.

Theorem 3.1 (Weakening and Substitution).

• If Γ ⊇ Δ and Δ ⊢ 𝑒 : 𝐴, then Γ ⊢ 𝑒 : 𝐴.
• If Γ ⊢ 𝜃 : Δ and Δ ⊢ 𝑒 : 𝐴, then Γ ⊢ 𝜃 (𝑒) : 𝐴.

Definition 3.2 (Substitution on variables).

𝜃 [𝑥] ≜


 𝜃 = ⟨ ⟩
𝑒 𝜃 = ⟨𝜙, 𝑒/𝑥⟩
𝜙 [𝑥] 𝜃 = ⟨𝜙, 𝑒/𝑦⟩, 𝑥 ≠ 𝑦
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Types 𝐴, 𝐵 ::= 1 | 𝐴 × 𝐵 | 𝐴 + 𝐵 | 𝐴⇒ 𝐵 | �̃�
Terms 𝑒 ::= ★ | (𝑒1, 𝑒2) | fst(𝑒) | snd(𝑒) | inl (𝑒) | inr (𝑒) | case(𝑒1, 𝑥 . 𝑒2, 𝑦. 𝑒3)

| 𝑥 | 𝜆(𝑥 : 𝐴). 𝑒 | 𝑒1 𝑒2 | 𝜆(𝑥 : �̃�). 𝑒 | 𝑒1 𝑒2
Values 𝑣 ::= ★ | (𝑣1, 𝑣2) | inl (𝑣) | inr (𝑣) | 𝑥 | 𝜆(𝑥 : 𝐴). 𝑒
Contexts Γ,Δ,Ψ ::= · | Γ, 𝑥 : 𝐴

Substitutions 𝜃, 𝜙 ::= ⟨ ⟩ | ⟨𝜃, 𝑣/𝑥⟩

(a) Grammar for 𝜆 ˜𝜆
𝑥 : 𝐴 ∈ Γ 𝑥 is a variable of type 𝐴 in context Γ

Γ ⊇ Δ Γ is a weakening of Δ
Γ ⊢ 𝜃 : Δ 𝜃 is a substitution from Γ to Δ
Γ ⊢ 𝑒 : 𝐴 𝑒 is an expression of type 𝐴 in context Γ

Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴 𝑒1 and 𝑒2 are equal expressions of type 𝐴 in context Γ

(b) Judgements for 𝜆 ˜𝜆

Γ ⊢ ★ : 1
1I

Γ ⊢ 𝑒1 : 𝐴 Γ ⊢ 𝑒2 : 𝐵
Γ ⊢ (𝑒1, 𝑒2) : 𝐴 × 𝐵

×I
Γ ⊢ 𝑒 : 𝐴 × 𝐵
Γ ⊢ fst(𝑒) : 𝐴

×E1
Γ ⊢ 𝑒 : 𝐴 × 𝐵
Γ ⊢ snd(𝑒) : 𝐵

×E2

Γ ⊢ 𝑒 : 𝐴
Γ ⊢ inl (𝑒) : 𝐴 + 𝐵

+I1
Γ ⊢ 𝑒 : 𝐵

Γ ⊢ inr (𝑒) : 𝐴 + 𝐵
+I2

Γ ⊢ 𝑒1 : 𝐴 + 𝐵 Γ, 𝑥 : 𝑒2 ⊢ 𝐴 : 𝐶 Γ, 𝑦 : 𝑒3 ⊢ 𝐵 : 𝐶

Γ ⊢ case(𝑒1, 𝑥 . 𝑒2, 𝑦. 𝑒3) : 𝐶
+E

𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴
Var

Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵
Γ ⊢ 𝜆(𝑥 : 𝐴). 𝑒 : 𝐴⇒ 𝐵

⇒I

Γ ⊢ 𝑒1 : 𝐴⇒ 𝐵 Γ ⊢ 𝑒2 : 𝐴
Γ ⊢ 𝑒1 𝑒2 : 𝐵

⇒E

Γ, 𝑥 : �̃� ⊢ 𝑒 : 𝐵
Γ ⊢ 𝜆(𝑥 : �̃�). 𝑒 : 𝐴 + 𝐵

⇒̃I

Γ ⊢ 𝑒1 : 𝐴 + 𝐵 Γ ⊢ 𝑒2 : �̃�
Γ ⊢ 𝑒1 𝑒2 : 𝐵

⇒̃E

(c) Typing rules for 𝜆 ˜𝜆

Fig. 1. Syntax and typing for 𝜆 ˜𝜆
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𝑥 : 𝐴 ∈ (Γ, 𝑥 : 𝐴)
∈-id

𝑥 : 𝐴 ∈ Γ (𝑥 ≠ 𝑦)
𝑥 : 𝐴 ∈ (Γ, 𝑦 : 𝐵)

∈-ex

(a) Context Membership Rules

· ⊇ ·
⊇-id

Γ ⊇ Δ

Γ, 𝑥 : 𝐴 ⊇ Δ, 𝑥 : 𝐴
⊇-cong

Γ ⊇ Δ

Γ, 𝑥 : 𝐴 ⊇ Δ
⊇-wk

(b) Weakening Rules

Γ ⊢ ⟨ ⟩ : ·
sub-id

Γ ⊢ 𝜃 : Δ Γ ⊢ 𝑣 : 𝐴
Γ ⊢ ⟨𝜃, 𝑣/𝑥⟩ : Δ, 𝑥 : 𝐴

sub-val

(c) Substitution Rules

Fig. 2. Membership, Weakening and Substitution Rules

Definition 3.3 (Substitution on raw terms).

𝜃 (★) ≜ ★

𝜃 ((𝑒1, 𝑒2)) ≜ (𝜃 (𝑒1), 𝜃 (𝑒2))
𝜃 (fst(𝑒)) ≜ fst(𝜃 (𝑒))
𝜃 (snd(𝑒)) ≜ snd(𝜃 (𝑒))

𝜃 (𝑥) ≜ 𝜃 [𝑥]
𝜃 (𝜆𝑥. 𝑒) ≜ 𝜆𝑦. ⟨𝜃, 𝑦/𝑥⟩(𝑒)
𝜃 (𝑒1 𝑒2) ≜ 𝜃 (𝑒1) 𝜃 (𝑒2)
𝜃 (inl (𝑒)) ≜ inl (𝜃 (𝑒))
𝜃 (inr (𝑒)) ≜ inr (𝜃 (𝑒))

𝜃 (case(𝑒, 𝑥 . 𝑒1, 𝑦. 𝑒2)) ≜ case(𝜃 (𝑒), 𝑧. ⟨𝜃, 𝑧/𝑥⟩(𝑒1), 𝑧. ⟨𝜃, 𝑧/𝑦⟩(𝑒2))
𝜃 (𝜆𝑥. 𝑒) ≜ 𝜆𝑦. ⟨𝜃, 𝑦/𝑥⟩(𝑒)
𝜃 (𝑒1 𝑒2) ≜ �𝜃 (𝑒1) 𝜃 (𝑒2)

4 SEMANTICS
4.1 Continuation semantics
Those familiar with continuations will recognize that these covalues look like continuations! Indeed,

we can interpret this language using continuation semantics, by giving a CPS translation, shown

in figure 3, which is familiar in the continuations literature [Streicher and Reus 1998]. It is given by

a family of semantic functions indexed by types and contexts: L−M𝛾
𝐴
: 𝜆 ˜𝜆𝐴 → (𝐴 → 𝑅) → 𝑅.

The base language is assumed to have functions, products, and sums, and the usual constructs

follow the standard call-by-value semantics, fixing a right-to-left evaluation order. On types, the �̃�

type is translated as 𝐴 → 𝑅, and the function type 𝐴⇒ 𝐵 as 𝐴 → (𝐵 → 𝑅) → 𝑅, as is standard.

The continuation of a lambda 𝜆𝑥. 𝑒 : 𝐴 ⇒ 𝐵 is 𝑘 : 𝐴 → (𝐵 → 𝑅) → 𝑅, which we apply to

a function that binds a value 𝑎 : 𝐴, a continuation 𝑘𝐵 : 𝐵 → 𝑅, and evaluates the body 𝑒 in the

extended context 𝛾, 𝑎, using the continuation 𝑘𝐵 . When translating an application 𝑒1 𝑒2 : 𝐵, we grab
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L★M𝛾1 ≜ 𝜆𝑘. 𝑘 ★

L (𝑒1, 𝑒2) M𝛾𝐴×𝐵 ≜ 𝜆𝑘. L𝑒2 M𝛾𝐵 (𝜆𝑏. L𝑒1 M
𝛾

𝐴
(𝜆𝑎. 𝑘 (𝑎, 𝑏)))

L fst(𝑒) M𝛾
𝐴
≜ 𝜆𝑘. L𝑒 M𝛾

𝐴×𝐵 (𝜆𝑝. 𝑘 fst(𝑝))
Lsnd(𝑒) M𝛾

𝐵
≜ 𝜆𝑘. L𝑒 M𝛾

𝐴×𝐵 (𝜆𝑝. 𝑘 snd(𝑝))
L inl (𝑒) M𝛾

𝐴+𝐵 ≜ 𝜆𝑘. L𝑒 M𝛾
𝐴
(𝜆𝑎. 𝑘 inl (𝑎))

L inr (𝑒) M𝛾
𝐴+𝐵 ≜ 𝜆𝑘. L𝑒 M𝛾

𝐵
(𝜆𝑏. 𝑘 inr (𝑏))

Lcase(𝑒, 𝑥 . 𝑒1, 𝑦. 𝑒2) M𝛾𝐶 ≜ 𝜆𝑘. L𝑒 M𝛾
𝐴+𝐵 (𝜆

{
inl (𝑎). L𝑒1 M𝛾,𝑎𝐶 𝑘

inr (𝑏). L𝑒2 M𝛾,𝑏𝐶 𝑘
)

L𝑥 M𝛾
𝐴
≜ 𝜆𝑘. 𝑘 (𝛾 (𝑥))

L𝜆𝑥. 𝑒 M𝛾𝐴⇒𝐵
≜ 𝜆𝑘. 𝑘 (𝜆𝑎. 𝜆𝑘𝐵 . L𝑒 M𝛾,𝑎𝐵 𝑘𝐵)

L𝑒1 𝑒2 M𝛾𝐵 ≜ 𝜆𝑘𝐵 . L𝑒2 M
𝛾

𝐴
(𝜆𝑎. L𝑒1 M𝛾𝐴⇒𝐵

(𝜆𝑓 . 𝑓 𝑎 𝑘𝐵))

L𝜆𝑥 . 𝑒 M
𝛾

𝐴+𝐵 ≜ 𝜆𝑘.
𝑙𝑒𝑡

{
𝑘𝐴 ≜ 𝜆𝑎. 𝑘 inl (𝑎)
𝑘𝐵 ≜ 𝜆𝑏. 𝑘 inr (𝑏)

𝑖𝑛 L𝑒 M𝛾,𝑘𝐴
𝐵

(𝑘𝐵)

L𝑒1 𝑒2 M
𝛾

𝐵
≜ 𝜆𝑘𝐵 . L𝑒2 M

𝛾

�̃�
(𝜆𝑘𝐴 . L𝑒1 M𝛾𝐴+𝐵 (𝜆

{
inl (𝑎). 𝑘𝐴 𝑎
inr (𝑏). 𝑘𝐵 𝑏

))

Fig. 3. Continuation semantics for 𝜆 ˜𝜆

a continuation 𝑘𝐵 , first evaluating the argument 𝑒2, which requires a continuation 𝐴 → 𝑅. We

pass a continuation that binds the value 𝑎 : 𝐴, then evaluates the function 𝑒1 in the same context,

passing 𝑎 and 𝑘𝐵 as arguments.

Dual to functions, the continuation of a colambda 𝜆𝑥. 𝑒 : 𝐴 + 𝐵 is 𝑘 : (𝐴 + 𝐵) → 𝑅, which we can

(crucially) split into two continuations 𝑘𝐴 : 𝐴 → 𝑅 and 𝑘𝐵 : 𝐵 → 𝑅. We pass the continuation 𝑘𝐴
into the environment 𝛾 , and evaluate the body 𝑒 in this extended environment, continuing with

𝑘𝐵 . To translate a coapplication 𝑒1 𝑒2 : 𝐵, we grab a continuation 𝑘𝐵 , then evaluate the argument

𝑒2, which requires a continuation (𝐴 → 𝑅) → 𝑅. We pass a continuation which binds the covalue

(or continuation) 𝑘𝐴 : 𝐴 → 𝑅, then evaluates the body 𝑒1 in the same context. This requires a

continuation (𝐴 + 𝐵) → 𝑅, which we define by cases. When it receives an inl (𝑎), the computation

continues as 𝑘𝐴 applied to 𝑎 – when it receives an inr (𝑏), the computation continues as 𝑘𝐵 applied

to 𝑏. From this semantics, we see that coabstraction and coapplication act as binding operators for

continuations – managing the two continuations for a sum type, justifying the slogan “higher-order

continuations”. The cocurrying isomorphism from equation (2) is:

Γ × (𝐴 → 𝑅) → ((𝐵 → 𝑅) → 𝑅) � Γ → ((𝐴 + 𝐵) → 𝑅) → 𝑅,

the lesson being, if you CPS your program, you can dualise functions!

4.2 Loch Ness semantics
The continuation semantics in the previous section makes it seem as if cofunctions were pulled out

of a hat, and does not explain the conceptual reasons or beauty behind the duality in this language.

The right way to understand this language is to understand the abstract structure of continuation

semantics using category theory. This is necessary to further develop the metatheory of our
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language – its equational theory. The ideas here are well-known in the semantics of continuations

(from Hofmann, Streicher, Thielecke, Selinger, Fuhrmann). We present a slightly different point of

view.

There are different approaches to axiomatizing the categorical semantics of continuations [Levy

2001, § 8.8]:

• axiomatizing the type of continuations ¬𝐴 or �̃� directly, following Thielecke [1997], or

• axiomatizing non-returning functions using an exponentiating object Hofmann [1995],

Streicher and Reus [1998], and Hofmann and Streicher [2002]

We develop the abstract structure of the first point of view, then instantiate it with the second point

of view. LetC be a (locally small) categorywith a functor¬ : Cop → C, that is self-adjoint on the right.

This means, for any objects 𝐴, 𝐵 ∈ C, we have the hom-set isomorphism: C(𝐵,¬𝐴) � C(𝐴,¬𝐵).

Cop C

¬

¬

⊣

The full image of ¬ : Cop → C, written C¬, is the (bijective-on-objects, fully faithful) factorisation

of ¬, which upto equivalence of categories, is determined by C¬ (𝐴, 𝐵) ≜ C(¬𝐴,¬𝐵). The functor
¬bo : C

op → C¬ is identity on objects, and negates morphisms, and the functor ¬ff : C¬ → C negates

objects, and is identity on morphisms. Dually, the full image of ¬op
: C → Cop

is C
op
¬ .

Cop C

C¬

¬ff

¬

¬bo

With this situation in mind, we observe the following:

Proposition 4.1.

(1) ¬ : Cop → C preserves limits, and ¬op
: C → Cop

preserves colimits.

(2) ¬bo is a right adjoint, and preserves limits. Dually, ¬op
bo is a left adjoint, and preserves colimits.

(3) C¬ is equivalent to the opposite of the Kleisli category of the ¬¬ monad on C, and C
op
¬ is

equivalent to the Kleisli category.

Proof. We have that, Cop (¬¬𝐴, 𝐵) ≡ C(𝐵,¬¬𝐴) � C(¬𝐴,¬𝐵) ≡ C¬ (𝐴, 𝐵) ≡ C¬ (𝐴,¬bo𝐵),
making ¬bo a right adjoint. And, C¬ (𝐴, 𝐵) = C(¬𝐴,¬𝐵) � C(𝐵,¬¬𝐴) ≡ C

op
¬¬ (𝐴, 𝐵). □

This general situation is exploited to understand the structure of the Kleisli category of the

continuation monad.

Proposition 4.2. If C is bicartesian, we have

(1) ¬0 � 1 and ¬(𝐴 + 𝐵) � ¬𝐴 × ¬𝐵.
(2) C¬ is cartesian, with products given by coproducts in C.

(3) ¬ff preserves products, and reflects exponentials.

Proposition 4.3. If C is bicartesian closed with a fixed object 𝑅 (the object of responses),

(1) ¬ ≜ 𝑅 (−)
is a self-adjoint on the right negation functor.

(2) ¬¬ is a strong monad on C, and has Kleisli exponentials.

(3) C¬ is cartesian closed, with exponentials 𝐵⇒𝐶 given by 𝐶 × 𝑅𝐵 .
(4) ¬ff is a cartesian closed functor.

(5) The Kleisli category of ¬¬ is cocartesian coclosed, and premonoidal.

12
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Here the trick is revealed, we have a cartesian closed category of values, a cocartesian coclosed

Kleisli category (of a strong monad) of computations, and we put them together in a call-by-value

language using the ideas of Moggi [1989]! There is no mathematical trickery here, and we’re simply

exploiting well-known mathematical structure and dressing it up. This is a matter of appearances –

a common trait of good magic tricks, and programming language design. Following Taylor [2002],

values are 𝑋 , and we think of covalues/continuations as observations 𝑅𝑋 , and computations 𝑅𝑅
𝑋

are meta-observations.

In terms of Selinger [2001, remark 1.1], C𝑅 (−) is a control category (the interpretation of cbn),

and the Kleisli category is a co-control category (the interpretation of cbv). Explicitly, we give all

the structure below, which we will use to give a categorical and denotational semantics for 𝜆 ˜𝜆.

Following Taylor [2002], we write 𝑅2𝑋 for 𝑅𝑅
𝑋

.

Definition 4.4.

𝐾 : C → C

𝑋 ↦→ 𝑅2𝑋

𝑋
𝑓
−→ 𝑌 ↦→ 𝐾 (𝑓 ) : 𝑅2𝑋 → 𝑅2𝑌

𝑘 ′ ↦→ 𝜆(𝑘 :𝑅𝑌 ). 𝑘 ′ (𝑘 ◦ 𝑓 )

The monad structure is given by:

Definition 4.5.

𝜂𝑋 : 𝑋 → 𝐾 (𝑋 )
𝑥 ↦→ 𝜆(𝑘 :𝑅𝑋 ). 𝑘 (𝑥)

𝜇𝑋 : 𝐾2 (𝑋 ) → 𝐾 (𝑋 )
𝑘 ′ ↦→ 𝜆(𝑘 :𝑅𝑋 ) . 𝑘 ′ (𝜆(𝑘 ′′ :𝑅2𝑋 ). 𝑘 ′′ (𝑘))

𝐾 is canonically strong with respect to ×, because C is cartesian closed. The left and right

strengths are given by:

Definition 4.6.

𝜏𝑋,𝑌 : 𝑋 × 𝐾𝑌 → 𝐾 (𝑋 × 𝑌 )
(𝑥, 𝑘 ′) ↦→ 𝐾 (𝜆(𝑦 :𝑌 ). (𝑥,𝑦)) (𝑘 ′)

𝜎𝑋,𝑌 : 𝐾𝑋 × 𝑌 → 𝐾 (𝑋 × 𝑌 )
(𝑘 ′, 𝑦) ↦→ 𝐾 (𝜆(𝑥 :𝑋 ). (𝑥,𝑦)) (𝑘 ′)

The continuationmonad𝐾 is not commutative because there are twoways to go from𝐾𝑋×𝐾𝑌 →
𝐾 (𝑋 × 𝑌 ) and they are not necessarily equal. If 𝐾 were commutative, then C𝐾 (the Kleisli category

of 𝐾 ) would be star-autonomous (an observation by Hasegawa, see [Melliès and Tabareau 2007]).

We write one of the maps (following right-to-left evaluation order) as:

Definition 4.7.

𝛽𝑋,𝑌 ≜ 𝐾 (𝑋 ) × 𝐾 (𝑌 )
𝜏𝐾𝑋,𝑌−−−−→ 𝐾 (𝐾𝑋 × 𝑌 )

𝐾𝜎𝑋,𝑌−−−−−→ 𝐾2 (𝑋 × 𝑌 )
𝜇𝑋×𝑌−−−−→ 𝐾 (𝑋 × 𝑌 )

Given a Kleisli arrow 𝑓 : 𝑋 → 𝐾𝑌 , its lift is 𝑓 † : 𝐾𝑋
𝐾𝑓
−−→ 𝐾2𝑌

𝜇𝑌−−→ 𝐾𝑌 . The Kleisli composition

of 𝑋
𝑓
−→ 𝐾𝑌 and 𝑌

𝑔
−→ 𝐾𝑍 is 𝑋

𝑓
−→ 𝐾𝑌

𝑔†

−→ 𝐾𝑍 . 𝐾 has Kleisli exponentials since:

C𝐾 (𝑍 × 𝑋,𝑌 ) ≡ C(𝑍 × 𝑋,𝐾𝑌 ) � C(𝑍,𝑋 → 𝐾𝑌 ) ≡ C(𝑍,𝑋 ⇒ 𝑌 ).
Coproducts in C𝐾 are given by the underlying coproducts in C:

C𝐾 (𝑋 + 𝑌, 𝑍 ) ≡ C(𝑋 + 𝑌, 𝐾𝑍 ) � C(𝑋,𝐾𝑍 ) × C(𝑌, 𝐾𝑍 ) ≡ C𝐾 (𝑋,𝑍 ) × C𝐾 (𝑌, 𝑍 ).
Finally, we have this hom-set isomorphism in C𝐾 :

C𝐾 (𝑍×𝑅𝑋 , 𝑌 ) ≡ C(𝑍×𝑅𝑋 , 𝑅𝑅𝑌 ) � C(𝑍×𝑅𝑋×𝑅𝑌 , 𝑅) � C(𝑍×𝑅𝑋+𝑌 , 𝑅) � C(𝑍, 𝑅𝑅𝑋+𝑌 ) ≡ C𝐾 (𝑍,𝑋+𝑌 ).
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Observe that (−) × 𝑅𝑋 is an endofunctor on C𝐾 , since:

𝑌
𝑓
−→ 𝐾𝑍 ↦→ 𝑌 × 𝑅𝑋

𝑓 ×𝑅𝑋
−−−−−→ 𝐾𝑍 × 𝑅𝑋

𝜎
𝑍,𝑅𝑋−−−−→ 𝐾 (𝑍 × 𝑅𝑋 ).

This means, we have the following adjoint situation in C𝐾 , where
𝑋𝑌 ≜ 𝑌 × 𝑅𝑋 :

𝑋 (−) ⊣ 𝑋 + (−) .
To work with exponentials and co-exponentials, we adopt the musical notation of adjuncts (flats on

the left, sharps on the right) as follows: Currying/uncurrying is the right/left adjunct operation in

(−) × 𝑋 ⊣ (−)𝑋 . Co-currying/co-uncurrying is the left/right adjunct operation in
𝑋 (−) ⊣ 𝑋 + (−).

Definition 4.8.

• The exponential of 𝐵 by 𝐴 is written as 𝐵𝐴.

• Given 𝑓 : 𝐶 ×𝐴 → 𝐵, the currying of 𝑓 is 𝑓
♯

: 𝐶 → 𝐵𝐴.

• Given 𝑔 : 𝐶 → 𝐵𝐴, the uncurrying of 𝑔 is 𝑔♭ : 𝐶 ×𝐴 → 𝐵.

• Evaluation is ev𝐴,𝐵 : 𝐵𝐴 ×𝐴 → 𝐵 ≜ id♭
𝐵𝐴

.

• The co-exponential of 𝐵 by 𝐴 is written as
𝐴𝐵.

• Given 𝑓 : 𝐵 → 𝐴 +𝐶 , the co-currying of 𝑓 is 𝑓 ♭ : 𝐴𝐵 → 𝐶 .

• Given 𝑔 : 𝐴𝐵 → 𝐶 , the co-uncurrying of 𝑔 is 𝑔
♯

: 𝐵 → 𝐴 +𝐶 .
• Co-evaluation is coev𝐴,𝐵 : 𝐵 → 𝐴 + 𝐴𝐵 ≜ id

♯

𝐴𝐵
.

4.3 The Indiana Control Operators
The conceptual understanding of the negation functor and the interplay of sums and products in

C𝑅 , C𝐾 is crucial to understanding the computational behaviour of control. We don’t say much

about the axiomatics here, but this is used in § 6.

The Kleisli inclusion is an ioo functor, and has a right adjoint, hence preserves coproducts. 0 is

an initial object in C𝐾 , and further 𝐾 (0) = 𝑅20 � 𝑅1 � 𝑅. Note that, 0 is not a strict initial object,
meaning that, having an arrow 𝐴 → 0 does not imply 𝐴 � 0. We can have non-trivial arrows to 0,

and these are indeed continuations of𝐴 in C𝐾 . The 𝑅 object in C𝐾 enjoys a special status, producing

control operators.

The Indiana control operators (Felleisen’s A and C) are developed in our semantics as follows.

These are axiomatically understood using Hofmann [1995]’s equations. (also see [Hyland et al.

2007, prop 1, 2]).

CA ≜ 𝑅
𝑅𝐴 ∼−−→ 𝑅𝑅

𝐴

AA ≜ (𝐴 𝜄1−→ 𝐴 + 𝐵
𝜂𝐴+𝐵−−−−→ 𝐾 (𝐴 + 𝐵))♭ : 𝐴 × 𝑅𝐴 → 𝐾 (𝐵)

tndA ≜ (Γ × 𝑅𝐴 𝜋2−−→ 𝑅𝐴
𝜂
𝑅𝐴−−−→ 𝐾 (𝑅𝐴))♯ : Γ → 𝐾 (𝐴 + 𝑅𝐴)

callccA (Γ × 𝑅𝐴
𝑓
−→ 𝐾 (𝐴)) ≜ Γ

𝑓
♯

−−→ 𝐾 (𝐴 +𝐴) 𝐾∇𝐴−−−→ 𝐾 (𝐴)

call/ccA,B (Γ × (𝑅𝑅𝐵×𝐴)
𝑓
−→ 𝐾 (𝐴)) ≜ Γ

𝑓
♯

−−→ 𝐾 (𝑅𝐵 ×𝐴 +𝐴)
𝐾 [𝜋2,1𝐴 ]−−−−−−−→ 𝐾 (𝐴)

The duplicating nature of pattern matching on sums is understood using:

𝐾 (𝐴 + 𝐵) 𝐾𝐶

𝑅𝑅
𝐴×𝑅𝐵 𝑅2𝐶

𝐾 [ 𝑓 ,𝑔]

∼

𝑅⟨𝑅𝑓 ,𝑅𝑔 ⟩
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J1K ≜ 1 J𝐴 × 𝐵 K ≜ J𝐴K × J𝐵 K
J0K ≜ 0 J𝐴 + 𝐵 K ≜ J𝐴K + J𝐵 K

J𝐴⇒ 𝐵 K ≜ (𝐾J𝐵 K)J𝐴 K J�̃�K ≜ 𝑅J𝐴 K

(a) J𝐴 K : Obj

J ·K ≜ 1

JΓ, 𝑥 : 𝐴K ≜ JΓ K × J𝐴K

(b) JΓ K : Obj

Fig. 4. Interpretation of types and contexts

5 INTERPRETATION
We now give an interpretation for 𝜆 ˜𝜆 using the categorical structure we’ve defined. This is standard

call-by-value semantics from Moggi [1989], with the addition of coproducts and coexponentials.

Types and contexts. Types and contexts are interpreted as objects in C, as shown in figure 4.

Expressions. Expressions are interpreted as Kleisli arrows, that is, morphisms in C𝐾 , as shown

in figure 5. This is standard call-by-value semantics from Moggi [1989], with sums and cofunctions.

Sums use the cocartesian structure, and distributivity for case. Cofunctions are interpreted using

the coexponential adjunction.

Weakening and Substitution. Membership and weakening are interpreted using projections

of contexts, as shown in figure 6. To interpret substitutions, we need a value interpretation. The

interpretation of values and substitutions is shown in figure 7. The value interpretation is coherent

with the expression interpretation, which we use to prove semantic weakening and substitution,

in theorem 5.1.

Theorem 5.1 (Semantic Weakening and Substitution).

• If Γ ⊢ 𝑣 : 𝐴, then JΓ ⊢ 𝑣 : 𝐴K = JΓ ⊢ 𝑣 : 𝐴K𝑣 ; 𝜂𝐴.

• If Γ ⊇ Δ and Δ ⊢ 𝑒 : 𝐴, then JΓ ⊢ 𝑒 : 𝐴K = Wk(Γ ⊇ Δ) ; JΔ ⊢ 𝑒 : 𝐴K.
• If Γ ⊢ 𝜃 : Δ and Δ ⊢ 𝑒 : 𝐴, then JΓ ⊢ 𝜃 (𝑒) : 𝐴K = JΓ ⊢ 𝜃 : ΔK ; JΔ ⊢ 𝑒 : 𝐴K.

Soundness. Using § 4.2, and by unpacking the definition of the continuation monad, we can show

that this is sound with respect to the CPS translation in § 4.1.

Theorem 5.2. If Γ ⊢ 𝑒 : 𝐴, then L𝑒 M𝛾
𝐴
(𝑘) = JΓ ⊢ 𝑒 : 𝐴K(𝛾, 𝑘), for any 𝛾 ∈ JΓ K and 𝑘 ∈ J𝐴K→ 𝑅.

6 EQUATIONAL THEORY
The purpose of giving a categorical semantics is to produce an equational theory for the language –

which is to be understood as an axiomatic theory generated by an operational semantics. On top of

the axiomatic equational theory, we add control effects, validated by our semantics. The equivalence

and congruence rules are standard, and we give the additional conversion rules in figure 8.

The conversion rules are the basic ones for call-by-value – extendedwith sums and co-exponentials

in figure 8. Beta laws for both functions and cofunctions are upto values, because substitution holds

for values. Functions satisfy eta laws upto values, because these are Kleisli exponentials. But the

coexponential adjunction lives in the computation category, so cofunctions satisfy eta laws for

expressions! These equations don’t perform any control effects – so far they’re only exploiting the

two adjunctions to validate binding rules.

The real test for an equational theory of continuations is in the axiomatics of control opera-

tors [Hyland et al. 2007]. In our calculus, the role of control operators is played by
˜𝜆, case, and their

interaction with sums. We design equations for control effects in 𝜆 ˜𝜆 in figure 8. These are inspired
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J
Γ ⊢ ★ : 1

K ≜ !Γ ; 𝜂1

J
Γ ⊢ 𝑒1 : 𝐴 Γ ⊢ 𝑒2 : 𝐵

Γ ⊢ (𝑒1, 𝑒2) : 𝐴 × 𝐵
K ≜

𝑙𝑒𝑡

{
𝑓 ≜ JΓ ⊢ 𝑒1 : 𝐴K
𝑔 ≜ JΓ ⊢ 𝑒2 : 𝐵 K

𝑖𝑛 ⟨𝑓 , 𝑔⟩ ; 𝛽𝐴,𝐵

J
Γ ⊢ 𝑒 : 𝐴 × 𝐵
Γ ⊢ fst(𝑒) : 𝐴

K ≜ JΓ ⊢ 𝑒1 : 𝐴K ; 𝐾𝜋1 J
Γ ⊢ 𝑒 : 𝐴 × 𝐵
Γ ⊢ snd(𝑒) : 𝐵

K ≜ JΓ ⊢ 𝑒2 : 𝐵 K ; 𝐾𝜋2

J
𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴
K ≜ J𝑥 : 𝐴 ∈ Γ K ; 𝜂𝐴

J
Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵

Γ ⊢ 𝜆(𝑥 : 𝐴). 𝑒 : 𝐴⇒ 𝐵
K ≜

𝑙𝑒𝑡 𝑓 ≜ JΓ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 K
𝑖𝑛 𝑓

♯

; 𝜂𝐴→𝐾𝐵

J
Γ ⊢ 𝑒1 : 𝐴⇒ 𝐵 Γ ⊢ 𝑒2 : 𝐴

Γ ⊢ 𝑒1 𝑒2 : 𝐵
K ≜

𝑙𝑒𝑡

{
𝑓 ≜ JΓ ⊢ 𝑒1 : 𝐴⇒ 𝐵 K
𝑔 ≜ JΓ ⊢ 𝑒2 : 𝐴K

𝑖𝑛 ⟨𝑓 , 𝑔⟩ ; 𝛽𝐴→𝐾𝐵,𝐴 ; 𝐾ev𝐴,𝐾𝐵 ; 𝜇𝐵

J
Γ ⊢ 𝑒 : 𝐴

Γ ⊢ inl (𝑒) : 𝐴 + 𝐵
K ≜ JΓ ⊢ 𝑒 : 𝐴K ; 𝐾𝑖1 J

Γ ⊢ 𝑒 : 𝐵
Γ ⊢ inr (𝑒) : 𝐴 + 𝐵

K ≜ JΓ ⊢ 𝑒 : 𝐵 K ; 𝐾𝑖2

J
Γ ⊢ 𝑒1 : 𝐴 + 𝐵 Γ, 𝑥 : 𝑒2 ⊢ 𝐴 : 𝐶 Γ, 𝑦 : 𝑒3 ⊢ 𝐵 : 𝐶

Γ ⊢ case(𝑒1, 𝑥 . 𝑒2, 𝑦. 𝑒3) : 𝐶
K ≜

𝑙𝑒𝑡


𝑓 ≜ JΓ ⊢ 𝑒1 : 𝐴 + 𝐵 K
𝑔1 ≜ JΓ, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐶 K
𝑔2 ≜ JΓ, 𝑦 : 𝐵 ⊢ 𝑒3 : 𝐶 K

𝑖𝑛 ⟨idΓ , 𝑓 ⟩ ; 𝜎Γ,𝐴 ; 𝐾𝛿Γ,𝐴,𝐵 ; 𝐾 [𝑔1 , 𝑔2] ; 𝜇𝐶

J
Γ, 𝑥 : �̃� ⊢ 𝑒 : 𝐵

Γ ⊢ 𝜆(𝑥 : �̃�). 𝑒 : 𝐴 + 𝐵
K ≜

𝑙𝑒𝑡 𝑓 ≜ JΓ, 𝑥 : �̃� ⊢ 𝑒 : 𝐵 K
𝑖𝑛 𝑓

♯

J
Γ ⊢ 𝑒1 : 𝐴 + 𝐵 Γ ⊢ 𝑒2 : �̃�

Γ ⊢ 𝑒1 𝑒2 : 𝐵
K ≜

𝑙𝑒𝑡

{
𝑓 ≜ JΓ ⊢ 𝑒1 : 𝐴 + 𝐵 K
𝑔 ≜ JΓ ⊢ 𝑒2 : �̃�K

𝑖𝑛 ⟨𝑓 , 𝑔⟩ ; 𝜏𝐾 (𝐴+𝐵),𝑅𝐴 ; 𝐾 id♭
𝐾 (𝐴+𝐵) ; 𝜇𝐵

Fig. 5. Interpretation of expressions, JΓ ⊢ 𝑒 : 𝐴 K : Hom(JΓ K, 𝐾J𝐴 K)

by Hofmann [1995] and Hofmann and Streicher [2002]’s equations, and Selinger [2001] equations

for cbv 𝜆𝜇. We use evaluation contexts instead of commuting conversions, with appropriate freeness

assumptions E = E«·» | 𝑒 E | E 𝑣 | 𝑒 E | 𝑒 E | fst(E) | snd(E) | (𝑒,E) | (E, 𝑣). We remark that

these operators have better types (than callcc/abort) – better types give better equations!

𝜆-const is the constant rule – when the covalue is not used, it’s a right-biased sum (cf. Selinger’s

letname). The next two rules are the interaction of normal sums and cofunctions. 𝜆-inr-pass is like
transparent passthrough, or that inr produces normal return – if the covalue was created by

˜𝜆 but

then used with inr, it might as well have never been created. 𝜆-inl-jump is the interesting control

effect, it is a non-local “jump with argument” (see[Thielecke 1999; Levy 2003]), where we throw to
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J
𝑥 : 𝐴 ∈ (Γ, 𝑥 : 𝐴)

K ≜ 𝜋2

J
𝑥 : 𝐴 ∈ Γ (𝑥 ≠ 𝑦)
𝑥 : 𝐴 ∈ (Γ, 𝑦 : 𝐵)

K ≜ 𝜋1 ; J𝑥 : 𝐴 ∈ Γ K

(a) J𝑥 : 𝐴 ∈ Γ K : Hom(JΓ K, J𝐴 K)

J
· ⊇ ·

K ≜ 𝑖𝑑1

J
Γ ⊇ Δ

Γ, 𝑥 : 𝐴 ⊇ Δ
K ≜ 𝜋1 ; JΓ ⊇ ΔK

J
Γ ⊇ Δ

Γ, 𝑥 : 𝐴 ⊇ Δ, 𝑥 : 𝐴
K ≜ [JΓ ⊇ ΔK × 𝑖𝑑𝐴]

(b) Wk(Γ ⊇ Δ) ≜ JΓ ⊇ ΔK : Hom(JΓ K, JΔK)

Fig. 6. Interpretation of Membership and Weakening

J
Γ ⊢ ★ : 1

K𝑣 ≜ !Γ

J
Γ ⊢ 𝑣1 : 𝐴 Γ ⊢ 𝑣2 : 𝐵

Γ ⊢ (𝑣1, 𝑣2) : 𝐴 × 𝐵
K𝑣 ≜ ⟨JΓ ⊢ 𝑣1 : 𝐴K𝑣 , JΓ ⊢ 𝑣2 : 𝐵 K𝑣⟩

J
𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴
K𝑣 ≜ J𝑥 : 𝐴 ∈ Γ K

J
Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵

Γ ⊢ 𝜆(𝑥 : 𝐴). 𝑒 : 𝐴⇒ 𝐵
K𝑣 ≜ JΓ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 K♯

J
Γ ⊢ 𝑒 : 𝐴

Γ ⊢ inl (𝑒) : 𝐴 + 𝐵
K𝑣 ≜ JΓ ⊢ 𝑣 : 𝐴K𝑣 ; 𝑖1 J

Γ ⊢ 𝑒 : 𝐵
Γ ⊢ inr (𝑒) : 𝐴 + 𝐵

K𝑣 ≜ JΓ ⊢ 𝑣 : 𝐵 K𝑣 ; 𝑖2

(a) JΓ ⊢ 𝑣 : 𝐴 K𝑣 : Hom(JΓ K, J𝐴 K)

J
Γ ⊢ ⟨ ⟩ : ·

K ≜ !Γ

J
Γ ⊢ 𝜃 : Δ Γ ⊢ 𝑣 : 𝐴
Γ ⊢ ⟨𝜃, 𝑣/𝑥⟩ : Δ, 𝑥 : 𝐴

K ≜ ⟨JΓ ⊢ 𝜃 : ΔK , JΓ ⊢ 𝑣 : 𝐴K𝑣⟩

(b) JΓ ⊢ 𝜃 : ΔK : Hom(JΓ K, JΔK)

Fig. 7. Interpretation of values and substitution

the left. This behaves like Felleisen’s A (Hofmann’s A −𝐴𝐵𝑆 equation), backtracking to where the

speculative choice was created, resuming with the value of the argument. The evaluation context

gets discarded – to an observer this speculative computation never ran.

The next control effect is the interaction of case and cofunctions.
˜𝜆 makes a speculative choice,

and case is trying to observe this choice.
˜𝜆 evaluates its body to a value – then speculatively offers

the right side of the choice to the observer. The interesting behaviour happens when the observer

uses the bound covalue to do another effect! Finally, case-𝜁 shows the duplication of evaluation

contexts on both branches of case. These equations are proven sound with respect to the semantics

developed.

Theorem 6.1 (Soundness of eqational theory). If Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴, then JΓ ⊢ 𝑒1 : 𝐴K = JΓ ⊢ 𝑒2 : 𝐴K.
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Γ ⊢ 𝑣 : 1
Γ ⊢ 𝑣 ≈★ : 1

1𝜂

Γ ⊢ 𝑣1 : 𝐴 Γ ⊢ 𝑣2 : 𝐵
Γ ⊢ fst((𝑣1, 𝑣2)) ≈ 𝑣1 : 𝐴

×1𝛽
Γ ⊢ 𝑣1 : 𝐴 Γ ⊢ 𝑣2 : 𝐵
Γ ⊢ snd((𝑣1, 𝑣2)) ≈ 𝑣2 : 𝐵

×2𝛽

Γ ⊢ 𝑣 : 𝐴 × 𝐵
Γ ⊢ (fst(𝑣), snd(𝑣)) ≈ 𝑣 : 𝐴 × 𝐵

×𝜂

Γ ⊢ 𝑣 : 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑒1 : 𝐶 Γ, 𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶
Γ ⊢ case(inl (𝑣), 𝑥 . 𝑒1, 𝑦. 𝑒2) ≈ [𝑣/𝑥]𝑒1 : 𝐶

+inl𝛽

Γ ⊢ 𝑣 : 𝐵 Γ, 𝑥 : 𝐴 ⊢ 𝑒1 : 𝐶 Γ, 𝑦 : 𝐵 ⊢ 𝑒2 : 𝐶
Γ ⊢ case(inr (𝑣), 𝑥 . 𝑒1, 𝑦. 𝑒2) ≈ [𝑣/𝑦]𝑒2 : 𝐶

+inr𝛽

Γ ⊢ 𝑒 : 𝐴 + 𝐵
Γ ⊢ case(𝑒, 𝑥 . inl (𝑥), 𝑦. inr (𝑦)) ≈ 𝑒 : 𝐴 + 𝐵

+𝜂

Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵 Γ ⊢ 𝑣 : 𝐴
Γ ⊢ (𝜆(𝑥 : 𝐴). 𝑒) 𝑣 ≈ [𝑣/𝑥]𝑒 : 𝐵

⇒𝛽
Γ ⊢ 𝑣 : 𝐴⇒ 𝐵

Γ ⊢ (𝜆(𝑥 : 𝐴). 𝑣 𝑥) ≈ 𝑣 : 𝐴⇒ 𝐵
⇒𝜂

Γ, 𝑥 : �̃� ⊢ 𝑒 : 𝐵 Γ ⊢ 𝑣 : �̃�

Γ ⊢ �(𝜆(𝑥 : �̃�). 𝑒) 𝑣 ≈ [𝑣/𝑥]𝑒 : 𝐵
𝜆𝛽

Γ ⊢ 𝑒 : 𝐴 + 𝐵
Γ ⊢ (𝜆(𝑥 : �̃�). 𝑒 𝑥) ≈ 𝑒 : 𝐴 + 𝐵

𝜆𝜂

(a) Conversion rules for the equational theory of 𝜆 ˜𝜆

Fig. 8. Equational theory of 𝜆 ˜𝜆

Proof. These are checked using universal properties, and value and substitution lemmas. For

control effects, we develop some axiomatic structure of control operators and exploit them. □

From this, it also follows that the equational theory is sound with respect to the continuation

semantics.

Corollary 6.2. If Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴, then for any 𝛾 and 𝑘 , L𝑒1 M𝛾𝐴 (𝑘) = L𝑒2 M𝛾𝐴 (𝑘).

To understand these equations better, we give them a workout. The well-known operational

semantics of TND [Wadler 2003] can be checked by running these two programs, that try to observe

𝜆𝑥. 𝑥 with case.

18



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

The Duality of Abstraction POPL’24, January 17–19, 2024, London, UK

Γ ⊢ 𝑒 : 𝐵
Γ ⊢ (𝜆(𝑥 : �̃�). 𝑒) ≈ inr𝐴 (𝑒) : 𝐴 + 𝐵

𝜆-const

Γ ⊢ 𝑒 : 𝐵 Γ ⊢ E«𝑒» : 𝐶 Γ, 𝑥 : �̃� ⊢ E« �inr𝐴 (𝑒) 𝑥» : 𝐶

Γ ⊢ (𝜆(𝑥 : �̃�). E« �inr𝐴 (𝑒) 𝑥») ≈ inr𝐴 (E«𝑒») : 𝐴 +𝐶
𝜆-inr-pass

Γ ⊢ 𝑒 : 𝐴 Γ, 𝑥 : �̃� ⊢ E« �inl𝐶 (𝑒) 𝑥» : 𝐵

Γ ⊢ (𝜆(𝑥 : �̃�). E« �inl𝐶 (𝑒) 𝑥») ≈ inl𝐵 (𝑒) : 𝐴 + 𝐵
𝜆-inl-jump

Γ, 𝑥 : �̃� ⊢ 𝑣 : 𝐵 Γ, 𝑦 : 𝐴 ⊢ 𝑒1 : 𝐶 Γ, 𝑧 : �̃� ⊢ 𝑒2 : 𝐶
Γ ⊢ case((𝜆(𝑥 : �̃�). 𝑣), 𝑦. 𝑒1, 𝑧. 𝑒2) ≈ case((𝜆(𝑥 : �̃�). [𝑣/𝑧]𝑒2), 𝑥 . 𝑒1, 𝑧. 𝑧) : 𝐶

case-𝜆-𝛽

Γ ⊢ E«case(𝑒, 𝑥 . 𝑒1, 𝑦. 𝑒2)» : 𝐶 Γ ⊢ case(𝑒, 𝑥 . E«𝑒1», 𝑦. E«𝑒2») : 𝐶
Γ ⊢ E«case(𝑒, 𝑥 . 𝑒1, 𝑦. 𝑒2)» ≈ case(𝑒, 𝑥 . E«𝑒1», 𝑦. E«𝑒2») : 𝐶

case-𝜁

Fig. 8. Control effects in 𝜆 ˜𝜆

case(𝜆𝑥. 𝑥, 𝑎. 0, 𝑘 . 1)
{ case(𝜆𝑥. 1, 𝑎. 0, 𝑦. 𝑦)
{ case(inr (1), 𝑎. 0, 𝑦. 𝑦)
{ 1

case(𝜆𝑥. 𝑥, 𝑎. 0, 𝑘 . �inl (1) 𝑘)
{ case(𝜆𝑥. �inl (1) 𝑥, 𝑎. 0, 𝑦. 𝑦)
{ case(inl (1), 𝑎. 0, 𝑦. 𝑦)
{ 0

We can define C𝐴 :
˜
�̃� → 𝐴 and its inverse from TND (double negation elimination and introduction).

fun C (kka : co (co a)) =

case (cofn x ⇒ x) of

INL a ⇒ a

| INR ka ⇒ (INL ka) @ kka

fun C^ (a : a) =

case (cofn x ⇒ x) of

INL ka ⇒ (INL a) @ ka

| INR kka ⇒ ka

We can further verify that these equations validate Hofmann and Streicher [1997]’s axiomatics of

cbv control operators. Since we don’t have 0, some of these equations have to be adjusted from

Hofmann’s versions.

Proposition 6.3. The equational theory validates these equations:

C𝐴 ( ˆC(𝑒)) = 𝑒 C-APP

callcc𝐴 (𝜆(𝑘 : �̃�). E«�inl (𝑒) 𝑘») = 𝑒 callcc-APP

call/cc𝐴,𝐵 (𝜆(𝑘 :𝐴 → 𝐵). E«𝑘 𝑒») = 𝑒 call/cc-ABS
call/cc𝐴,𝐵 (𝑒) = call/cc𝐴,𝐶 (𝜆(𝑘 :𝐴 → 𝐶). 𝑒 (𝜆(𝑥 :𝐴). E«𝑘𝑥»)) call/cc-APP

E«call/cc𝐴,𝐵» = call/cc𝐶,𝐵 (𝜆(𝑘 :𝐶 → 𝐵). E«𝑒 (𝜆(𝑥 :𝐴). 𝑘 (E«𝑥»))») call/cc-NAT

Not including the 0 type is a stylistic choice, not a semantic one, since it is interpreted by 𝑅, and

�̃� becomes equivalent to 𝐴⇒ 0 after adding equations for A. We prefer to abort using sums, by inl
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and coapplication, which is semantically equivalent. Another approach is to add a judgement for

non-returning programs, like in Zeilberger [2009]’s cbv CPS calculus, or Levy [2003]’s JwA.

7 DUALITY OF ARROWS
The 𝜆-calculus (or higher-order functions) can be decomposed into first-order𝜅/𝜁 calculi [Hasegawa
1995] with value/variable arrows. Building on the theme of duality – we show the decomposition

of
˜𝜆 (or higher-order cofunctions) into first-order �̃�/𝜁 calculi with covariable/covalue (co)arrows.

The essential idea behind this is Lambek [1974]’s functional completeness – a consequence of

cartesian closure. We perform a conceptual reconstruction of Hasegawa’s ideas using abstract

properties of (co)monads and adjunctions, allowing us to dualise each step.

7.1 Dualizing Functional Completeness
From an observation, originally due to Hermida [1993]:

Proposition 7.1 (Hermida [1993, Prop. 5.2.1]). Given a comonad 𝐺 : C → C and its Kleisli

resolution 𝐹𝐺 ⊣ 𝑈𝐺 : C → C𝐺 ,

the following are equivalent:

(1) 𝐺 has a right adjoint 𝐺 ⊣ 𝑇 : C → C.

(2) 𝑈𝐺 has a right adjoint𝑈𝐺 ⊣ 𝑅 : C𝐺 → C.

Under either of the above equivalent hypotheses, 𝑇 (= 𝑅 ◦ 𝑈𝐺 ) is the functor part of a monad, and the

corresponding Kleisli category C𝑇 is isomorphic to C𝐺 .

Dually, if a monad𝑇 : C → C has Kleisli resolution𝑈𝑇 ⊣ 𝐹𝑇 : C → C𝑇 , the following are equivalent:

(1) 𝑇 has a left adjoint 𝐺 ⊣ 𝑇 : C → C.

(2) 𝑈𝑇 has a left adjoint 𝐿 ⊣ 𝑈𝑇 : C𝑇 → C.

Then, 𝐺 (= 𝐿 ◦ 𝐹𝑇 ) is the functor part of a comonad, and the corresponding Kleisli category C𝐺 is

isomorphic to C𝑇 .

Proof. Starting from (1), the functor 𝑅 is given by 𝑇 on objects, and for 𝐺𝑎
𝑓
−→ 𝑏, acts on

morphisms as 𝑇𝑎
𝑇𝜂𝑎−−−→ 𝑇𝐺𝑇𝑎

𝑇𝛿𝑇𝑎−−−−→ 𝑇𝐺𝐺𝑇𝑎
𝑇𝐺𝜖𝑎−−−−→ 𝑇𝐺𝑎

𝑇 𝑓
−−→ 𝑇𝑏. This makes 𝑇 = 𝑅 ◦ 𝑈𝐺 a monad.

Hermida gives a direct calculation of the monad structure. □

The informal idea is that in the 𝜆-calculus, 𝐶 × (−) is a reader/coreader/environment comonad,

with a free value 1 { 𝐶 , and its right adjoint 𝐶 ⇒ (−) is a reader monad, with a free value 1 { 𝐶

injected into its environment. Dually, 𝐶 + (−) is an exception monad, with a free covalue 𝐶 { 0 in

its environment, that is, an escape hatch to jump to 𝐶 . In ˜𝜆 (with cocartesian coclosure), this has a

left adjoint comonad
𝐶 (−), which merits the name: exception/coexception/handler comonad. It has

a free covalue 𝐶 { 0 injected into its environment, or, a handler for 𝐶 .

Proposition 7.2. In a cartesian closed category with 𝑐 × (−) ⊣ (−)𝑐 : C → C:

(1) 𝑐 × (−) : C → C is a comonad.

(2) (−)𝑐 : C → C is a monad.

(3) Their Kleisli categories are equivalent: C(𝑐 × 𝑎, 𝑏) � C(𝑎, 𝑏𝑐 ).
(4) Their Kleisli categories are cartesian closed.

In a cocartesian coclosed category with
𝑐 (−) ⊣ 𝑐 + (−)C → C:

(1) 𝑐 + (−) : C → C is a monad.

(2)
𝑐 (−) : C → C is a comonad.

(3) Their Kleisli categories are equivalent: C(𝑐𝑎, 𝑏) � C(𝑎, 𝑐 + 𝑏).
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(4) Their Kleisli categories are cocartesian coclosed.

The Kleisli category C𝑐×(−) , written C[𝑐], has a generic element (value) 𝑒𝑐 : 1 → 𝑐 , given by

𝑐 ×1

∼−→ 𝑐 . This is Hasegawa’s “fullness condition”: C[𝑐] (1,−) � C(𝑐,−). Dually, the Kleisli category
C𝑐+(−) , written C[𝑐], has a generic element (covalue) 𝑒𝑐 : 𝑐 → 0, given by 𝑐

∼−→ 𝑐 + 0. From this, we

derive functional completeness and its dual:

Proposition 7.3 (Functional completeness). Let C and D be cartesian closed categories and

𝐹 : C → D a ccc functor. Let 𝑐 ∈ C, and 𝑡 : 𝐹 (1) � 1 → 𝐹 (𝑐) be an element in D. There is a unique

(upto isomorphism) extension of 𝐹 to a ccc functor 𝐹 : C[𝑐] → D, such that 𝐹 ◦ 𝑈𝑐×(−) � 𝐹 , and
𝐹 (𝑒𝑐 ) = 𝑡 .
Dually, let C and D be cocartesian coclosed categories and 𝐹 : C → D a coccc functor. Let 𝑐 ∈ C,

and 𝑡 : 𝐹 (𝑐) → 𝐹 (0) � 0 be an element in D. There is a unique (upto isomorphism) extension of 𝐹 to

a coccc functor 𝐹 : C[𝑐] → D, such that 𝐹 ◦ 𝑈𝑐+(−) � 𝐹 , and 𝐹 (𝑒𝑐 ) = 𝑡 .

C C[𝑐] C C[𝑐]

D D

𝑈𝑐×(−)

𝐹
𝐹

𝐹𝑐+(−)

𝐹
𝐹

Proof. 𝐹 is given by 𝐹 on objects, and on morphisms calculated as follows:

𝐹 (𝑎) ∼→ 1 × 𝐹 (𝑎) ∼→ 𝐹 (1) × 𝐹 (𝑎)
𝑡×𝐹 (𝑎)
−−−−−→ 𝐹 (𝑐) × 𝐹 (𝑎) ∼→ 𝐹 (𝑐 × 𝑎)

𝐹 (𝑓 )
−−−−→ 𝐹 (𝑏)

𝐹 (𝑎)
𝐹 (𝑓 )
−−−−→ 𝐹 (𝑐 + 𝑏) ∼→ 𝐹 (𝑐) + 𝐹 (𝑏)

𝑡+𝐹 (𝑏 )
−−−−−→ 𝐹 (0) + 𝐹 (𝑏) ∼→ 0 + 𝐹 (𝑏) ∼→ 𝐹 (𝑏)

□

The Kleisli resolutions of these monads/comonads produce Hasegawa’s left/right adjoints to

inclusion functors, giving 𝜅/𝜁 abstraction, and their duals �̃�/𝜁 abstraction.

𝐹𝑐×(−) ⊣ 𝑈𝑐×(−) : C → C[𝑐] 𝐹 (−)𝑐 ⊣ 𝑈 (−)𝑐 : C[𝑐] → C

𝐹𝑐+(−) ⊣ 𝑈𝑐+(−) : C[𝑐] → C 𝐹𝑐 (−) ⊣ 𝑈𝑐 (−) : C → C[𝑐]

7.2 𝜅/𝜁 and �̃�/ ˜𝜁 calculi
From this analysis, we extract a presentation of the dual �̃�/ ˜𝜁 calculi, with substitution and equations,
given in figures 9 and 10. We see the − type in action, for the handler comonad.

Just as𝜅 and 𝜁 can be understood as first-order languages for understanding functions, �̃� and ˜𝜁 can

be understood as first-order languages for understanding exceptions and handlers. By interpreting

in our running cocc category C𝐾 , a covalue 𝑐 : 𝐶 { 0 is a 𝐶 → 𝑅20 � 𝐶 → 𝑅 – a continuation,

and these first-order operations bind and apply covalues on arrows, changing control flow. The

type 𝐴 −𝐶 is interpreted as 𝐴 with a handler for 𝐶 attached, and 𝐶 + 𝐵 is a 𝐵 program that could

throw an 𝐴. The operators themselves don’t have control effects.

As an example, suppose we have a sequential program:

𝐴
𝑓
−−→ 𝐵

𝑔
−−→ 𝐶

ℎ−−→ 𝐷
𝑒−−→ 𝐸

We decide to inspect the program at 𝐶 , so we insert a code pointer (or breakpoint):

𝐴
𝑓
−−→ 𝐵

𝜁𝑧𝑍 .𝑔
−−−−→ 𝑍 +𝐶 ℎ𝑍−−→ 𝑍 + 𝐷

p̃ass𝐷 (𝑧 )
−−−−−−→ 𝐷

𝑒−−→ 𝐸
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[𝑥 : 1 { 𝐶]
...

𝑓 : 𝐴 { 𝐵

𝜅𝑥𝐶 .𝑓 : (𝐶 ×𝐴) { 𝐵
×L

[𝑥 : 1 { 𝐶]
...

𝑓 : 𝐴 { 𝐵 𝑐 : 1 { 𝐶

(𝜅𝑥𝐶 .𝑓 ) ◦ lift𝐴 (𝑐) ≡ 𝑓 [𝑐/𝑥] : 𝐴 { 𝐵
𝜅+

𝑐 : 1 { 𝐶

lift𝐴 (𝑐) : 𝐴 { (𝐶 ×𝐴)
×R

ℎ : (𝐶 ×𝐴) { 𝐵

𝜅𝑥𝐶 .(ℎ ◦ lift𝐴 (𝑥)) ≡ ℎ : (𝐶 ×𝐴) { 𝐵
𝜅−

(a) 𝜅 calculus

𝑐 : 1 { 𝐶

pass𝐵 (𝑐) : (𝐶 ⇒ 𝐵) { 𝐵
⇒L

ℎ : 𝐴 { (𝐶 ⇒ 𝐵)
𝜁𝑥𝐶 .(pass𝐵 (𝑥) ◦ ℎ) ≡ ℎ : 𝐴 { (𝐶 ⇒ 𝐵)

𝜁 −

[𝑥 : 1 { 𝐶]
...

𝑓 : 𝐴 { 𝐵

𝜁𝑥𝐶 .𝑓 : 𝐴 { (𝐶 ⇒ 𝐵)
⇒R

[𝑥 : 1 { 𝐶]
...

𝑓 : 𝐴 { 𝐵

pass𝐵 (𝑐) ◦ (𝜁𝑥𝐶 .𝑓 ) ≡ 𝑓 [𝑐/𝑥] : 𝐴 { 𝐵
𝜁 +

(b) 𝜁 calculus

Fig. 9. 𝜅 and 𝜁 calculi

[𝑥 : 𝐶 { 0]
...

𝑓 : 𝐴 { 𝐵

�̃�𝑥𝐶 .𝑓 : (𝐴 −𝐶) { 𝐵
−L

[𝑥 : 𝐶 { 0]
...

𝑓 : 𝐴 { 𝐵

�̃�𝑥𝐶 .𝑓 ◦ l̃ift𝐴 (𝑐) ≡ 𝑓 [𝑐/𝑥] : 𝐴 { 𝐵
�̃�+

𝑐 : 𝐶 { 0

l̃ift𝐴 (𝑐) : 𝐴 { (𝐴 −𝐶)
−R

ℎ : (𝐴 −𝐶) { 𝐵

�̃�𝑥𝐶 .(ℎ ◦ l̃ift𝐴 (𝑥)) ≡ ℎ : (𝐴 −𝐶) { 𝐵
𝜅−

(a) �̃� calculus

𝑐 : 𝐶 { 0

p̃ass𝐵 (𝑐) : (𝐶 + 𝐵) { 𝐵
+L

ℎ : 𝐴 { (𝐶 + 𝐵)
𝜁𝑥𝐶 .(p̃ass𝐵 (𝑥) ◦ ℎ) ≡ ℎ : 𝐴 { (𝐶 + 𝐵)

˜𝜁 −

[𝑥 : 𝐶 { 0]
...

𝑓 : 𝐴 { 𝐵

𝜁𝑥𝐶 .𝑓 : 𝐴 { (𝐶 + 𝐵)
+R

[𝑥 : 𝐶 { 0]
...

𝑓 : 𝐴 { 𝐵

p̃ass𝐵 (𝑐) ◦ (𝜁𝑥𝐶 .𝑓 ) ≡ 𝑓 [𝑐/𝑥] : 𝐴 { 𝐵

˜𝜁 +

(b) ˜𝜁 calculus

Fig. 10. �̃� and ˜𝜁 calculi
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The program ℎ𝑍 could then use the 𝑍 path to do something interesting – inspect the program’s state

at that point, modify it, or return a 𝑍 value, skipping 𝑒 and escaping. This suggests a mechanism

for debugging or checkpoints.

8 IMPLEMENTING ˜𝜆

Conor McBride once said:

Moggi [1989] taught the dog how to bark, Wadler [1993] made us bark ourselves.

Unlike other dual calculi, ours readily adapts to control operators because of its natural deduction

style presentation, that can be implemented in or retrofit into a real-world programming language.

We can implement
˜𝜆 using native continuations (like in SML), or we can implement it using a

continuation monad (like in Haskell). We describe both implementations, and their applications

are in the supplementary material.

SML. In SML, we implement them using the native continuation type with control operators

callcc/throw, and sum types. This encoding shows how colam/coapp are like callcc/throw, but with

fancier types.

signature COEXP =

sig

type 'a cont

val colam : ('a cont → 'b) → ('a, 'b) either

val coapp : ('a, 'b) either → 'a cont → 'b

end

structure Coexp: COEXP =

struct

type 'a cont = 'a cont

fun colam (f : 'a cont → 'b) : ('a, 'b) either =

callcc (fn (k : ('a, 'b) either cont) ⇒
let val a = callcc (fn (ka : 'a cont) ⇒ throw k (INR (f ka)))

in throw k (INL a)

end)

fun coapp (e : ('a, 'b) either) (k : 'a cont) : 'b =

case e of

INL a ⇒ throw k a

| INR b ⇒ b

end

We then recover callcc/throw from colam/coapp.

fun codiag (e : ('a, 'a) either) : 'a =

case e of

INL a ⇒ a

| INR a ⇒ a

fun callcc (f : 'a cont → 'a) : 'a = codiag (colam f)

fun throw (a : 'a) (k : 'a cont) : 'b = coapp (INL a) k

Haskell. In Haskell, we implement using the continuation monad Cont r.
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colam :: ((a → r) → Cont r b) → Cont r (a + b)

colam f = cont $ \k →
let k1 = k . Left

k2 = k . Right

in runCont (f k1) k2

coapp :: Cont r (a + b) → (a → r) → Cont r b

coapp e1 k1 = cont $ \k2 →
runCont e1 $ \case

Left a → k1 a

Right b → k2 b

Backtracking. These co-exponential combinators are useful for programming with two continua-

tions (double-barrelled cps), which is a common style for backtracking, with a success and a failure

continuation.

swap :: a + b → b + a

swap = either Right Left

assumeRight :: ((a → r) → Cont r b) → Cont r (a + b)

assumeRight = colam

resolveRight :: Cont r (a + b) → (a → r) → Cont r b

resolveRight = coapp

assumeLeft :: ((b → r) → Cont r a) → Cont r (a + b)

assumeLeft = fmap swap . colam

resolveLeft :: Cont r (a + b) → (b → r) → Cont r a

resolveLeft = coapp . fmap swap

Using this DSL for backtracking, we program a SAT solver, and backtracking tree search.

Effect handlers. Effect handlers are a natural example for managing stacks of continuations –

the handler algebra 𝑓 𝑟 → 𝑟 , and the generator 𝑎 → 𝑟 , where 𝑓 is the signature. Of course, this

requires the result type to be manipulated in the type of the handler algebra. With this fancier type,

effect handlers can be encoded by using a CPS-encoded Free monad, and using the co-exponential

combinators to manipulate the stack of handlers.

These applications are worked out in the supplementary material.

9 DISCUSSION
The theme of this work is the duality of currying and cocurrying, which is used to produce a

duality of abstraction – for values and covalues. This is a useful perspective showing that values

and continuations are dual to each other and have the same ontological status. Continuations

producing left adjoints to sums provides insights into the behavior of sums and control flow.

Axiomatics of control effects. We conflated value sums and computational sums – but this

language can also be presented in fine-grained call-by-value, and then axiomatized using Freyd

categories. This is a framework for studying equations for control effects, which we will pursue in
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future work, and also understand the status of completeness with respect to CPS semantics. The

state of the art is in the work of Führmann and Thielecke [2004], and their reflection/structure

theorems.

This calculus presented shows how covalues/continuations are capabilities – they provide an

escape catch to perform control effects. This is a good fit for the purity comonads of Choudhury and

Krishnaswami [2020]. Dropping capability variables from the context would block control effects,

recovering pure sums from backtracking sums! This needs to be worked out in the denotational

semantics.

Dual calculi. The modern view of dualities of computation is in polarised adjunction calculi and

their models [Curien, Fiore, et al. 2016]. The duality exploited here shows up in their cartesian

polarised structure theorems (Ex.27). Freyd categories with closed, coclosed structure can be related

to Fiore’s biclosed action models, which we will explore further.

In general, dual calculi for values and covalues take both cbv and cbn points of view, but ours

restricts to the cbv case and exhibits a different duality. This can be understood by looking at the

cbv variants of 𝜆𝜇 and 𝜇�̃�. Selinger [2001] presents a cbv version of 𝜆𝜇 with 𝜇 binding two variables,

which uses the coexponential interpretation. Other presentations of 𝜆𝜇 in cbv, such as the one by

Ong and Stewart [1997], does not exhibit this structure. The cbv translation of 𝜇�̃� in [Curien and

Herbelin 2000] uses the subtraction type, but they do not develop an equational theory.

There are too many presentations of CPS calculi in the literature to compare against. The crucial

difference is that we stick to a natural deduction style presentation – the closest cousins are Levy’s

JwA and Zeilberger’s cbv cps calculus (which use non-returning judgements), or Harper’s callcc in

SML. Compared to these, we exploit coexponentials to exhibit a duality. Ariola et al. [2009] present

a sequent calculus language for subtraction, but we have not added subtraction as a primitive.

Instead we show it in our dual arrow calculi.

Logical aspects. This is a calculus for classical logic – provability in Gentzen’s LK (without ⊥) is
equivalent to typability in 𝜆 ˜𝜆. Similarly, provability in Crolard [2001]’s subtractive logic + TND is

equivalent to typability in 𝜆 ˜𝜆.

This work was inspired by the semantic understanding of dualities in session types and classical

linear logic, in particular, while trying to understand the axiomatics of (−)∗ in star-autonomous

categories. The (−)∗ operator is an involution, but𝑅 (−)
of continuations is not. But, they both exhibit

a function/cofunction duality – star-autonomous categories have⊸ and

⊸

. This is developed in

the work of Melliès [2017] on dialogue categories, studying the axiomatics of negation motivated

by game semantics, which inspired our analysis. The composable continuations monad [Atkey

2009] has a similar adjunction, but it is not a monad: 𝐶 × 𝑆𝐴 � 𝐶 → 𝑅𝑆
𝐴+𝐵

.

Lawvere’s boundary operator. The type 𝜕𝐴 = 𝐴 − 𝐴 is Lawvere’s boundary operator of co-

Heyting algebras. Using the subtraction type, this admits a computational interpretation – producing

differential structure, for example, it admits a Leibniz rule: 𝜕𝐴 × 𝐵 = 𝜕𝐴 × 𝐵 +𝐴 × 𝜕𝐵.
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A SUPPLEMENTARY MATERIAL FOR SECTION 1 (INTRODUCTION)
For logicians: the duality is in the symmetry of these two logical equivalences:

Γ, 𝐴 ⊢ 𝐵 →𝐼
Γ ⊢ 𝐴 → 𝐵 Γ ⊢ 𝐴 →𝐸

Γ ⊢ 𝐵

Γ,¬𝐴 ⊢ ¬¬𝐵
Γ ⊢ ¬¬(𝐴 ∨ 𝐵) Γ ⊢ ¬𝐴

Γ ⊢ ¬¬𝐵
The second derivation holds in intuitionistic logic, which crucially depends on the encoding of ¬𝐴
as 𝐴 → ⊥.

Γ, 𝐴 ⊢ 𝐴 ∨ 𝐵
Γ,¬(𝐴 ∨ 𝐵), 𝐴 ⊢ 𝐴 ∨ 𝐵

Γ,¬(𝐴 ∨ 𝐵) ⊢ ¬(𝐴 ∨ 𝐵)
Γ,¬(𝐴 ∨ 𝐵), 𝐴 ⊢ ¬(𝐴 ∨ 𝐵)

Γ,¬(𝐴 ∨ 𝐵), 𝐴 ⊢ ⊥
Γ,¬(𝐴 ∨ 𝐵) ⊢ ¬𝐴

Γ, 𝐵 ⊢ 𝐴 ∨ 𝐵
Γ,¬(𝐴 ∨ 𝐵), 𝐵 ⊢ 𝐴 ∨ 𝐵

Γ,¬(𝐴 ∨ 𝐵) ⊢ ¬(𝐴 ∨ 𝐵)
Γ,¬(𝐴 ∨ 𝐵), 𝐵 ⊢ ¬(𝐴 ∨ 𝐵)

Γ,¬(𝐴 ∨ 𝐵), 𝐵 ⊢ ⊥
Γ,¬(𝐴 ∨ 𝐵) ⊢ ¬𝐵

Γ,¬𝐴 ⊢ ¬¬𝐵 Γ,¬(𝐴 ∨ 𝐵) ⊢ ¬𝐴
Γ,¬(𝐴 ∨ 𝐵) ⊢ ¬¬𝐵 Γ,¬(𝐴 ∨ 𝐵) ⊢ ¬𝐵

Γ,¬(𝐴 ∨ 𝐵) ⊢ ⊥
Γ ⊢ ¬¬(𝐴 ∨ 𝐵)

In type theory and category theory, these are the two isomorphisms:

𝐶 ×𝐴 → 𝐵 � 𝐶 → 𝐵𝐴 𝐶 × 𝑅𝐴 → 𝑅𝑅
𝐵

� 𝐶 → 𝑅𝑅
𝐴+𝐵

or in terms of adjunctions:

(−) ×𝐴 ⊣ (−)𝐴 (−) × 𝑅𝐴 ⊣ 𝐴 + (−)
where the first adjunction lives in a cartesian closed category of values, and the second adjunction

lives in a cocartesian coclosed category of computations: the Kleisli category of the double negation,

or double dualization, or continuation monad.

B SUPPLEMENTARY MATERIAL FOR SECTION 2 (DUALITY BY EXAMPLE)
Using case, we can define the familiar callcc control operator:

fun callcc (f : co a → a) : a =

let (s : a + a) = cofn (k : co a) ⇒ f k

in case s of

INL a ⇒ a

| INR a ⇒ a

This definition highlights the duplicating nature of callcc – if it weren’t a sum type, we wouldn’t

have case. So far, we have seen values and covalues, and they live in harmony, by the use of functions

and cofunctions, and they don’t interact. To make them interact we need a throw operation, which

we can define using coapplication:

fun throw (x : a) (k : co a) : b = (INL x) @ k

To a continuations afficionado, these operators are familiar, except we have a primitive type co a

for covalues (which are, not surprisingly, continuations), and we can program with them recovering

the computational interpretation of classical logic. Tertium Non Datur (or the Law of the Excluded
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Middle) is the identity cofunction, as we have already seen, saying that any type can produce a

value or a covalue out of nothing, with no third possibility. Exploiting tnd and case, we can perform

double negation introduction:

fun tnd () : a + co a = cofn (k : co a) ⇒ k

fun dni (x : a) : co (co a) =

case tnd () of

INL ka ⇒ throw x ka

| INR kka ⇒ kka

Crucially, note that we are working with a primitive notion of negation, the co a type, instead of

negation as a function a → 0. The self-adjointness of negation is fundamental, and is captured by

the following term:

fun adj (f : co a → b) : co b → a =

let val (s : a + b) = cofn (k : co a) ⇒ f k in

let val (t : b + a) = case s of INL a ⇒ INR a | INR b ⇒ INL b in

fn (kb : co b) ⇒ t @ kb

end

end

Using this, we can define double negation elimination, and the contravariance of negation:

fun dne (kka : co (co a)) : 'a =

adj (fn ka ⇒ ka) kka

fun contramap (f : a → b) : co b → co a =

adj (fn kka ⇒ f (dne kka))

The classical encoding of functions as material implication is obtained as follows:

fun lam (f : a → b) : co a + b =

cofn kka ⇒ f (dne kka)

fun app (e : co a + b) : a → b =

fn a ⇒ e @ dni a

de Morgan’s laws are obtained as follows:

fun deMorgan1 (k : co (a + b)) : (co a * co b) =

(contramap INL k, contramap INR k)

fun deMorgan2 ((ka , kb) : co a * co b) : co (a + b) =

contramap (fn e ⇒ e @ ka) kb

fun deMorgan3 (kp : co (a * b)) : co a + co b =

adj (fn ks ⇒ let val (kka, kkb) = deMorgan1 ks in (dne kka, dne kkb) end) kp

fun deMorgan4 (ks : co a + co b) : co (a * b) =

case tnd () of

INL (a, b) ⇒ (case ks of INL ka ⇒ throw a ka | INR kb ⇒ throw b kb)

| INR kp ⇒ kp
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The subtraction type is the dual of the function type. We show this by defining functions ftoc and

ctof (named after the operators in [Führmann and Thielecke 2004, § 3]).

fun ftoc (f : a → b) : co (a - b) =

case lam f of

INL ka ⇒ deMorgan4 (INL ka)

| INR b ⇒ deMorgan4 (INR (dni b))

fun ctof (k : co (a - b)) : 'a → 'b =

fn a ⇒ case deMorgan3 k of

INL ka ⇒ throw a ka

| INR kkb ⇒ dne kkb

Finally, Peirce’s law, which is the type of the general callCC can be derived as follows:

fun peirce (f : ('a → 'b) → 'a) : 'a =

case lam f of

INL kg ⇒ #1 (adj ctof kg)

| INR a ⇒ a

This highlights how the covalue for b is dropped.

C SUPPLEMENTARY MATERIAL FOR SECTION 4 (SEMANTICS)
C.1 Other Co-exponentials
As an aside, we give some other examples of co-exponentials.

A Heyting algebra is a bounded lattice with an implication operator →, such that, 𝑐 ∧ 𝑎 ⩽ 𝑏

iff 𝑐 ⩽ 𝑎 → 𝑏, making 𝑎 → 𝑏 the relative pseudo-complement of 𝑎 with respect to 𝑏. This can

equivalently be described as a poset (thin category) with finite products (meets), finite coproducts

(joins), which is cartesian closed. Since product functors are left adjoints, they preserve coproducts,

hence meets distribute over joins, making them a distribute lattice.

The dual of a Heyting algebra is a co-Heyting algebra: it has finite meets and joins, and a co-

implication operator \, such that 𝑎 ⩽ 𝑏 ∨ 𝑐 iff 𝑎 \ 𝑏 ⩽ 𝑐 . This can equivalently be described as a

poset with finite products (meets), finite coproducts (joins), which is co-cartesian co-closed. Any

Heyting algebra can be turned into a co-Heyting algebra by inverting the poset ordering. If a lattice

carries both Heyting and co-Heyting structures, it s a bi-Heyting algebra.

Consider the vertical natural numbers N∪ {𝜔}, with {0 ⩽ 1 ⩽ 2 ⩽ . . . ⩽ 𝜔}. This is an example

of a bi-Heyting algebra.

(1) 𝑚 ∧ 𝑛 ≜ min(𝑚,𝑛), bounded by 𝜔 .

(2) 𝑚 ∨ 𝑛 ≜ max(𝑚,𝑛), bounded by 0.

(3) 𝑚 → 𝑛 ≜ max { 𝑝 | min(𝑝,𝑚) ⩽ 𝑛 }.
(4) 𝑚 \ 𝑛 ≜ min { 𝑝 | 𝑚 ⩽ max(𝑛, 𝑝) }.
Every Boolean algebra gives a bi-Heyting algebra, where 𝑎 → 𝑏 ≜ ¬𝑎 ∨ 𝑏 and 𝑎 \ 𝑏 ≜ 𝑎 ∧ ¬𝑏.

As an example, consider the powerset lattice𝔓(𝐶) of any set 𝐶 , ordered by ⊆.
(1) 𝑋 ∧ 𝑌 ≜ 𝑋 ∩ 𝑌 , bounded by 𝐶 .

(2) 𝑋 ∨ 𝑌 ≜ 𝑋 ∪ 𝑌 , bounded by ∅.
(3) 𝑋 → 𝑌 ≜ 𝑋𝑐 ∪ 𝑌 .
(4) 𝑋 \ 𝑌 ≜ 𝑋 ∩ 𝑌 𝑐 .
More generally, the subobject classifier of any presheaf category PSh(𝐶) for any small category

𝐶 is a bi-Heyting algebra (Johnstone). For any topological space, the lattice of open subsets is a

Heyting algebra and the lattice of closed subsets is a co-Heyting algebra. Also see Brouwerian

algebras, semi-Boolean algebras (Rauszer).
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Γ ⊢ 𝑒 : 𝐴
Γ ⊢ 𝑒 ≈ 𝑒 : 𝐴

refl

Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴
Γ ⊢ 𝑒2 ≈ 𝑒1 : 𝐴

sym

Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴 Γ ⊢ 𝑒2 ≈ 𝑒3 : 𝐴
Γ ⊢ 𝑒1 ≈ 𝑒3 : 𝐴

trans

Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴 × 𝐵
Γ ⊢ fst(𝑒1) ≈ fst(𝑒2) : 𝐴

fst()-cong
Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴 × 𝐵

Γ ⊢ snd(𝑒1) ≈ snd(𝑒2) : 𝐵
snd()-cong

Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴 Γ ⊢ 𝑒3 ≈ 𝑒4 : 𝐵
Γ ⊢ (𝑒1, 𝑒3) ≈ (𝑒2, 𝑒4) : 𝐴 × 𝐵

pair-cong

Γ, 𝑥 : 𝐴 ⊢ 𝑒1 ≈ 𝑒2 : 𝐵
Γ ⊢ 𝜆𝑥 . 𝑒1 ≈ 𝜆𝑥. 𝑒2 : 𝐴⇒ 𝐵

𝜆-cong
Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴⇒ 𝐵 Γ ⊢ 𝑒3 ≈ 𝑒4 : 𝐴

Γ ⊢ 𝑒1 𝑒3 ≈ 𝑒2 𝑒4 : 𝐵
app-cong

Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴
Γ ⊢ inl (𝑒1) ≈ inl (𝑒2) : 𝐴 + 𝐵

inl-cong
Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐵

Γ ⊢ inr (𝑒1) ≈ inr (𝑒2) : 𝐴 + 𝐵
inr-cong

Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴 + 𝐵 Γ, 𝑥 : 𝐴 ⊢ 𝑒3 ≈ 𝑒4 : 𝐶 Γ, 𝑦 : 𝐵 ⊢ 𝑒5 ≈ 𝑒6 : 𝐶
Γ ⊢ case(𝑒1, 𝑥 . 𝑒3, 𝑦. 𝑒5) ≈ case(𝑒2, 𝑥 . 𝑒4, 𝑦. 𝑒6) : 𝐶

case-cong

Γ, 𝑥 : �̃� ⊢ 𝑒1 ≈ 𝑒2 : 𝐵
Γ ⊢ 𝜆𝑥. 𝑒1 ≈ 𝜆𝑥 . 𝑒2 : 𝐴⇒ 𝐵

𝜆-cong
Γ ⊢ 𝑒1 ≈ 𝑒2 : 𝐴⇒ 𝐵 Γ ⊢ 𝑒3 ≈ 𝑒4 : 𝐵

Γ ⊢ 𝑒1 𝑒3 ≈ 𝑒2 𝑒4 : 𝐴
coapp-cong

(a) Equivalence and congruence rules for the equational theory of 𝜆 ˜𝜆

Γ ⊢ 𝑒 : 𝐵

Γ ⊢ (𝜆(𝑥 : �̃�). �inr (𝑒) 𝑥) ≈ inr (𝑒) : 𝐴 + 𝐵
𝜆-inr-𝜂

Γ ⊢ 𝑒 : 𝐴

Γ ⊢ (𝜆(𝑥 : �̃�). �inl (𝑒) 𝑥) ≈ inl (𝑒) : 𝐴 + 𝐵
𝜆-inl-𝜂

Fig. 12. Backtracking in 𝜆 ˜𝜆 (derivable)

However, all these examples are posets, and there is no computational content if we choose

to use this as a denotational semantics. Instead we have a given a construction of a co-cartesian

co-closed category, starting from a bi-cartesian closed category, using the continuation, or double

dualization monad (Kock). Since we do not have the cartesian closure and co-cartesian co-closure

on the same category, we do not encounter the problem of degeneracy. This means we still retain

computational content, as we will see in later sections, by giving an equational theory.

D SUPPLEMENTARY MATERIAL FOR SECTION 6 (EQUATIONAL THEORY)
From the 𝜆𝜂 rule, we can derive the two backtracking rules in figure 12.
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