Weighted Sets
Q
Modalitier
Vimamun Chonolhing
Syeo 8

DYdivation

- Programs have intenival information
- Apace Usage
- Implicit Complexity
- Effects
- Linear Logic, Modalities
- Linear dependent type theory?

Length espaces (Htofmann'03)

$$
\begin{aligned}
& \operatorname{Olg} x=\left(|x|: \text { set, } l_{x}:|x| \rightarrow \mathbb{N}\right) \\
& \operatorname{Hom}(x, y)=\left\{f:|x| \rightarrow|y| \mid \forall x \cdot l_{y}(f(x)) \leqslant l_{x}(x)\right\}
\end{aligned}
$$

Carterian Clored

$$
\begin{array}{rlrl}
|1| & =\{*\} & l_{1}(*)=0 \\
|x \times y| & =|x| \times|y| & l_{x \times y}(x, y)=\max \left(l_{x}(x), l_{y}(y)\right) \\
\left|y^{x}\right| & =|x| \rightarrow|y| & l_{y^{x}}(f)=\min ^{\prime}\left\{n\left|\forall_{x} \in\right| x \mid,\right. \\
& \left.l_{y}(f(x)) \leqslant \max \left(n, l_{x}(n)\right)\right\}
\end{array}
$$

Symmetic Monoidal Clored

$$
\begin{aligned}
& I= 1 \\
&|x \otimes y|=|x| \times|y| \quad l_{x \otimes y}(x, y)=l_{x}(x)+l_{y}(y) \\
&|x \rightarrow y|=|x| \rightarrow|y| \quad l_{x \rightarrow y}(f)= \\
& \quad \min _{x}\{n|\forall x \in| x \mid, \\
& l_{y}\left(f(x) \leq n+l_{x}(x)\right\}
\end{aligned}
$$

Coproducts

$$
\begin{array}{ll}
|x+y|=|x|+|y| & l_{x+y}\left(i_{1}(x)\right)=l_{x}(x) \\
& l_{x+y}\left(i_{2}(y)\right)=l_{y}(y)
\end{array}
$$

This is a model of Bunched Implication (BI).
But it's not equivalent to $\left[\mathbb{N}^{\circ}\right.$, set $]$.

Why does this work?

Families Construction

Let l be a (small) category.
Fan (l) has:

$$
\begin{aligned}
& \text { Obj } x=\left(|x|: \text { Set, } \omega_{x}:|x| \rightarrow \omega_{b}(e)\right) \\
& \operatorname{Hom}(x, y)=\left(f:|x| \rightarrow|y|, w_{+}\right) \\
& |x| \underset{\substack{w_{x} \\
w_{x} \\
\underset{O b}{ }(e)}}{\substack{w_{f}}}|y|
\end{aligned}
$$

- Form (e) har small coproducts
- Every oleject X is a formal coproduct

$$
\sum_{x:|x|} w_{x}(x)
$$

- Mniversal Property:

Given a categoy D woth ssall coproducts and a functor $F: e \rightarrow \varnothing$, there is a unique (up to nati iso.) coproduct presering functor $F^{\#}: \operatorname{Fam}(e) \rightarrow D$

$$
\begin{aligned}
& \operatorname{Fam}(e) \xrightarrow{F^{\#}} A \\
& \tilde{y} \int_{e} \simeq F \\
& \tilde{y}: e \longrightarrow \operatorname{Fam}(e) \quad \operatorname{Lan}_{\tilde{y}^{\#}} F \\
& p \longmapsto(\{*\}, * \longmapsto p):=1_{p} \\
&-\operatorname{Coman}(C))_{\text {ex }} \\
& \operatorname{CoProd}(\operatorname{Fam}(e), D) \simeq[e, D]
\end{aligned}
$$

- Fam: Cat \rightarrow CAT is a fully -faithful KZ 2 -monad.

Examples

$$
\begin{aligned}
-\operatorname{Fam}(1) & \simeq \text { Set } \\
-\operatorname{Fam}(\delta e t) & \simeq \text { Set } \rightarrow
\end{aligned}
$$

- If C has limits, then so does $\operatorname{Fam}(e)$.
- If l is carterian closed, then so is $\operatorname{Fam}(e)$
- If l is symnetric maviidal closed, so is $\operatorname{Fam}(C)$.
(Mose generally,
- Fam (e) has timits iff e has multi-limits.
- If e has fisite products, thew Fam(e) is cartenian-closed iff e is carterian milti-closed and has mutti-products.
(How nice are free cocomplitions, Adämck \& Roricky')

Weighted Sols
Let L be a completer Heating, Algebra (locale)

$$
(\leqslant, 0,1, \wedge, \vee,[-,-])
$$

A weighted set is $x=\left(|x|:\right.$ Set, $\left.w_{x}:|x| \rightarrow L\right)$.
A wight-preserving maps $X \rightarrow Y$ is a map $f:|x| \rightarrow|y|$, such that $\forall x, w_{x}(x) \leqslant w_{y}(f(x)$.
α_{+} / \mathcal{L}-Set /Fam(h) in the category of weighted sets.

Bi- Casterian Closed Atructure

$$
\begin{aligned}
1 & =\{*\} \quad w_{1}(*)=1 \\
|x x y| & =|x| x|y| \quad w_{x x y}(x, y)=w_{x}(x) \wedge w_{y}(y) \\
& \left|y^{x}\right|=|x| \rightarrow|y| \quad w_{y x}(f)=\bigwedge_{x:|x|}\left[w_{x}(x), w_{y}(f(x))\right] \\
|x+y|=|x|+|y| & w_{x+y}\left(i,(x)=w_{x}(x)\right. \\
& \quad w_{x+y}\left(i_{2}(y)\right)=w_{y}(y)
\end{aligned}
$$

- Fuzgy Bets, $F_{u z}(L) / F_{\text {am }}(h) \simeq \operatorname{MonSh}(h)$ (Bare'86)

Locally Cartesian-Cosed structure
Pullbacks

$$
\begin{aligned}
\left|x_{x_{A}} y\right| & =\{(x, y) \mid f(x)=g(y)\} \\
w_{x_{x_{A} y}}(x, y) & =w_{x}(x) \wedge w_{y}(y)
\end{aligned}
$$

Families of weighted sets
Let A be a weighted set.

$$
\left(X_{a} \mid a \in A\right), \quad w_{X_{a}}: X_{a} \rightarrow L
$$

such tent $w_{X_{a}}(x) \leqslant w_{A}(a), \forall x \in X_{a}, a \in A$.

$$
\begin{aligned}
& X=L\left(X_{a} \mid a \in A\right) \\
& w_{x}(x)=w_{X_{a}}(x), x \in X_{a}
\end{aligned}
$$

$$
\begin{aligned}
& -f: B \rightarrow A \\
& \Delta_{f}: L_{+} / A \rightarrow L_{+} / B \\
& \left(X_{a} \mid a \in A\right) \mapsto\left(X_{f(b)} \mid b \in B\right) \\
& \sum_{f}: \alpha_{+} / B \rightarrow \alpha_{+} / A \\
& (y \mid b \in R) \mapsto\left(>y_{h} \mid a \in A\right)
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{f}: L_{+} / B \rightarrow \alpha_{+} / A \\
& \left(y_{b} \mid b \in B\right) \mapsto\left(\prod_{b \in \beta_{a}} \mid a \in A\right) \\
& -\sum_{f}-1 \Delta_{f} \rightarrow \Pi_{f} \\
& \text { - If, } \begin{aligned}
& B \xrightarrow{\nu} D \\
& \downarrow, g
\end{aligned} \quad \Delta_{g} \vec{Z}_{n} \cong \sum_{v} \Delta_{f} \\
& \Delta_{g} \pi_{u} \cong \pi_{v} \Delta_{f}
\end{aligned}
$$

POodalities
fix $p \in L$.

$$
\begin{aligned}
& \square_{p}: \alpha_{+} \rightarrow \alpha_{+} \\
& \left(x, w_{x}\right) \mapsto\left(\left\{x \mid w_{x}(x) \leq p\right\}, w_{x}\right) \\
& \varepsilon_{x}: \square_{p} x \rightarrow x \quad \text { Lex, idempotent } \\
& \delta_{x}: \square_{p} x \xrightarrow{\sim} \square_{p}^{2} \times
\end{aligned}
$$

Grading

$$
\begin{aligned}
& \square_{p} \square_{q} \cong \square_{p \wedge q} \cong \square_{q} \square_{p} \\
& \square_{p} \square_{1} \cong \square_{p \wedge 1} \cong \square_{p}
\end{aligned}
$$

Application
$P(C)$ is completer bi-theyting.

$$
\begin{array}{r}
\frac{x \cap A \subseteq B}{x \subseteq A^{c} \cup B} \quad \frac{x \cup A \supseteq B}{x \geq A^{c} \cap B} \\
-(\gamma(c), \supseteq) \text {-weighted wt } \\
\left(x: \text { Set, } w_{x}: x \rightarrow 8(c)\right)
\end{array}
$$

track captured variables
$-f: X \rightarrow Y, \quad \forall x . W_{y}(f(x)) \subseteq w_{X}(x)$.

$$
\begin{aligned}
& -W_{1}=\phi \\
& -W_{A \times B}(a, b)=W_{A}(a) \cup W_{B}(b) \\
& -W_{B A}(f)=W_{B}(f(a)) \cup W_{A}(a) \\
& -C=\left(C: S e t, W_{e}(c)=\{c\}\right)
\end{aligned}
$$

No global section $1 \rightarrow C$

$$
\begin{aligned}
- & \square X=\left\{x \in X \mid w_{x}(x)=\phi\right\} \\
- & |T X|=|x| \times(c \rightarrow M) \\
& w_{T X}(x, f)=w_{x}(x) \cup\{c \mid f(c) \neq e\}
\end{aligned}
$$

- Cancellation: $\Phi: \square T \times \xrightarrow{\sim} \square X$

Recovering Purity in an Impure Language
λ_{c}

$$
\begin{gathered}
\frac{\Gamma, x: A+e: B}{\Gamma+\lambda x \cdot e: A \rightarrow B} \frac{\Gamma+e_{1}: A \Gamma+e_{2}: B}{\Gamma+\left(e_{1}, e_{2}\right): A \times B} \\
\frac{\Gamma+c: \text { Chan } \Gamma+s: \delta t r}{\Gamma \vdash c \cdot p \operatorname{print}(s): 1} \\
-\frac{\Gamma+e: 1}{\Gamma+e \equiv *: 1} x
\end{gathered}
$$

Extend with \square

$$
\begin{gathered}
\Gamma:=0\left|\Gamma, x: A^{p}\right| \Gamma, x: A^{i} \\
y:=\Gamma+e: A \mid \Gamma \vdash^{p} e: A \\
\frac{\Gamma^{p}+e: A}{\Gamma+\operatorname{box}(e): \square A} \frac{\Gamma+e_{1}: \square A \quad \Gamma, x: A^{p}+e_{2}: B}{\Gamma+\operatorname{let} \operatorname{box}(x)=e_{1} \text { in } e_{2}: B} \\
\Gamma^{p}=\left\{x: A^{p} \in \Gamma\right\}
\end{gathered}
$$

(Recovering Puity ming Comomes 6Cp.bilitios, C. 8 Krishnummi)

Interpret in $K l(T)$

$$
\llbracket \frac{\Gamma+c: \text { Chan } \Gamma+s: S t_{r}}{\Gamma \vdash c \cdot p r i n t(s): 1} \rrbracket=\langle c, s\rangle ; \beta ; T_{p ; \mu}
$$

where $p: C \times s \rightarrow T 1$

$$
\begin{array}{r}
(c, s) \mapsto *, \lambda c^{\prime} \begin{cases}s & \text { if } c=c^{\prime} \\
e & o / w\end{cases} \\
\llbracket \frac{\Gamma^{P}+e: A}{\Gamma+b_{00}(e): \llbracket A} \rrbracket=\rho(\Gamma) ; M(\Gamma) ; \square \llbracket \Gamma^{P}+e: A \rrbracket ; \phi_{A} ; \eta_{O A}
\end{array}
$$

Substitution

- If $\Gamma \vdash \theta: \Delta, \Delta \vdash e: A$, then $\Gamma \vdash \theta(e): A$

$$
-\llbracket \Gamma \vdash \theta(e): A \rrbracket=\llbracket \Gamma+\theta: \Delta \mathbb{\Pi} ; \Delta+e: A \rrbracket .
$$

Equational Theory_

- If $\Gamma \vdash e_{1}=e_{2}: A$, then $\llbracket \Gamma+e_{1}: A \rrbracket=\llbracket \Gamma+e_{2}: A \rrbracket$

Conservative Extension of λ

$$
\begin{aligned}
& \underline{A \Rightarrow B}=\square A \Rightarrow B \\
& \lambda x \cdot e
\end{aligned}=\lambda z \cdot \text { let box }(x)=z \text { in } e . ~ l
$$

- If $\mathbb{\Gamma} F_{\lambda} e_{1} \equiv e_{2}: A \mathbb{I}$, then $\Gamma \vdash e_{1} \equiv e_{2}: \underline{A}$
- If $\Gamma+e_{1}: A, \Gamma+e_{2}: A$, and $\Gamma+e_{1} \equiv e_{2}: A$, then $\Gamma+e_{\lambda} \equiv e_{2}: A$.

Concluding Thoughts

- Other examples?
- Linear dependent types?
- Interaction of monadr/comanads?

