
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Symmetries in Sorting
Anonymous Author(s)

Abstract
Sorting algorithms are fundamental to computer science, and

their correctness criteria are well understood as rearranging

elements of a list according to a specified total order on the

underlying set of elements. Unfortunately, as mathematical

functions, they are rather violent, because they perform

combinatorial operations on the representation of the

input list. In this paper, we study sorting algorithms

conceptually as abstract sorting functions. We show that

sorting functions determine a well-behaved section (right

inverse) to the canonical surjection sending a free monoid

to a free commutative monoid of its elements. Introducing

symmetry by passing from free monoids (ordered lists)

to free commutative monoids (unordered lists) eliminates

ordering, while sorting (the right inverse) recovers ordering.

From this, we give an axiomatization of sorting which does

not require a pre-existing total order on the underlying

set, and then show that there is an equivalence between

(decidable) total orders on the underlying set and correct

sorting functions.

The first part of the paper develops concepts from

universal algebra from the point of view of functorial

signatures, and gives various constructions of free monoids

and free commutative monoids in type theory, which are

used to develop the second part of the paper about the

axiomatization of sorting functions. The paper uses informal

mathematical language, and comes with an accompanying

formalization in Cubical Agda.

Keywords: universal algebra, category theory, type theory,

homotopy type theory, combinatorics, formalization

1 Introduction
Consider a puzzle about sorting, inspired byDijkstra’s Dutch

National Flag problem [Dijkstra 1997, Ch.14]. Suppose there

are balls of three colors, corresponding to the colors of the

Dutch flag: red, white, and blue.

{ , , }

Given an unordered list (bag) of such balls, how many ways

can you sort them into the Dutch flag?

* , , , , , , , +

Obviously there is only one way, decided by the order the

colors appear in the Dutch flag: red < white < blue.

[, , , , , , ,]

CPP’25, Jan 19–25, 2025, Denver, CO, USA
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

What if we are avid enjoyers of vexillology who also want

to consider other flags? We might ask: how many ways can

we sort our unordered list of balls? We know that there are

only 3! = 6 permutations of {red,white, blue}, so there are

only 6 possible orderings we can define. In fact, there are

exactly 6 such categories of tricolor flags (see Wikipedia).

We have no allegiance to any of the countries presented by

the flags, hypothetical or otherwise – this is purely a matter

of combinatorics.

We posit that, because there are exactly 6 orderings, we

can only define 6 extensionally correct sorting functions.

Formally, there is a bijection between the set of orderings on

a carrier set𝐴 and the set of correct sorting functions on lists

of𝐴. In fact, a sorting function can be correctly axiomatized

just from the point of view of this bijection!

Outline and Contributions. The paper is organized as

follows:

• In § 2, we remark on the notation and type-theoretic

conventions used in the paper.

• In § 3, we describe a formalization of universal algebra

developed from the point of view of functorial signatures,

the definition and universal property of free algebras, and

algebras satisfying an equational theory.

• In § 4, we give various constructions of free monoids, and

their proofs of universal property. Then, in § 5, we add

symmetry to each representation of free monoids, and

extend the proofs of universal property from free monoids

to free commutative monoids. These constructions are

well-known, but we formalize them conceptually by

performing formal combinatorial operations.

• In § 6, we build on the constructions of the previous

sections and study sorting functions. The main result

in this section is to connect total orders, sorting, and

symmetry, by proving an equivalence between decidable

total orders on a carrier set 𝐴, and correct sorting

functions on lists of 𝐴.

• All the work in this paper is formalized in Cubical Agda,

which is discussed in § 7. The accompanying code is

available as supplementary material.

• § 8 discusses related and future work.

The three main parts of the paper can be read independently.

Readers interested in the formalization of universal algebra

can start from § 3. Readers interested in the constructions

of free monoids and free commutative monoids can skip

ahead to §§ 4 and 5. If the reader already believes in the

existence of free algebras for monoids and commutative

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://en.wikipedia.org/wiki/List_of_flags_with_blue,_red,_and_white_stripes#Triband

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

CPP’25, Jan 19–25, 2025, Denver, CO, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

monoids, they can directly skip to the application section on

sorting, in § 6. Although the formalization is a contribution

in itself, the purpose of the paper is not to directly discuss

the formalization, but to present the results in un-formalized

form (in type-theoretic foundations), so the ideas are

accessible to a wider audience.

2 Notation
The text follows the notational conventions of the HoTT/UF

book [Univalent Foundations Program 2013]. The work is

formalized in Cubical Agda which uses Cubical Type Theory

– we refer the readers to other works such as [Vezzosi et al.

2019] for an in-depth tutorial on Cubical Type Theory and

programming in Cubical Agda.

We denote the type of types with U, and choose to

drop universe levels. We use × for product types and +
for coproduct types. For mere propositions, we use ∧ to

denote conjunction, and ∨ to denote logical disjunction

(truncated coproduct). We use Finn to denote finite sets of

cardinality 𝑛 in HoTT. hProp and hSet denote the universe
of propositions and sets, respectively, and we write Set to
denote the (univalent) category of sets and functions.

3 Universal Algebra
We first develop some basic notions from universal algebra

and equational logic [Birkhoff 1935]. Universal algebra

is the abstract study of algebraic structures, which have

(algebraic) operations and (universal) equations. This gives

us a vocabulary and framework to express our results in.

The point of view we take is the standard category-theoretic

approach to universal algebra, which predates the Lawvere

theory or abstract clone point of view. We keep a running

example of monoids in mind, while explaining and defining

the abstract concepts.

3.1 Algebras
Definition 3.1 (Signature). A signature, denoted 𝜎 , is a

(dependent) pair consisting of:

• a set of operations, op : Set,
• an arity function for each symbol, ar : op → Set.

Example 3.2. A monoid is a set with an identity element

(a nullary operation), and a binary multiplication operation,

with signature 𝜎Mon ≔ (Fin2, 𝜆{0 ↦→ Fin0; 1 ↦→ Fin2}).
Every signature 𝜎 induces a signature functor 𝐹𝜎 on Set.

Definition 3.3 (Signature functor 𝐹𝜎 : Set → Set).

𝑋 ↦→ ∑
(𝑜 : op) 𝑋

ar(𝑜)

𝑋
𝑓
−→ 𝑌 ↦→ ∑

(𝑜 : op) 𝑋
ar(𝑜) (𝑜,−◦𝑓)

−−−−−−→ ∑
(𝑜 : op) 𝑌

ar(𝑜)

Example 3.4. The signature functor for monoids, 𝐹𝜎Mon ,

assigns to a carrier set𝑋 , the sets of inputs for each operation.

Expanding the dependent product on Fin2, we obtain a

coproduct of sets: 𝐹𝜎Mon (𝑋) ≃ 𝑋 Fin0 + 𝑋 Fin2 ≃ 1 + (𝑋 × 𝑋).

A 𝜎-structure is given by a carrier set, with functions

interpreting each operation symbol. The signature functor

applied to a carrier set gives the inputs to each operation, and

the output is simply a map back to the carrier set. Formally,

these two pieces of data are an algebra for the 𝐹𝜎 functor.

We write 𝔛 for a 𝜎-structure with carrier set 𝑋 , following

the model-theoretic notational convention.

Definition 3.5 (Structure). A 𝜎-structure 𝔛 is an 𝐹𝜎 -

algebra, that is, a pair consisting of:

• a carrier set 𝑋 , and

• an algebra map 𝛼𝑋 : 𝐹𝜎 (𝑋) → 𝑋 .

Example 3.6. Concretely, an 𝐹𝜎Mon-algebra has the type

𝛼𝑋 : 𝐹𝜎Mon (𝑋) → 𝑋 ≃ (1 + (𝑋 × 𝑋)) → 𝑋

≃ (1 → 𝑋) × (𝑋 × 𝑋 → 𝑋)
which is the pair of functions interpreting the two operations.

Natural numbers N with (0,+) or (1,×) are examples of

monoid structures.

Definition 3.7 (Homomorphism). A homomorphism

between two 𝜎-structures 𝔛 and 𝔜 is a morphism of 𝐹𝜎 -

algebras, that is, a map 𝑓 : 𝑋 → 𝑌 such that:

𝐹𝜎 (𝑋) 𝑋

𝐹𝜎 (𝑌) 𝑌

𝛼𝑋

𝐹𝜎 (𝑓) 𝑓

𝛼𝑌

Example 3.8. Given two monoids 𝔛 and 𝔜, the top half

of the diagram is: 1 + (𝑋 × 𝑋) 𝛼𝑋−−→ 𝑋
𝑓
−→ 𝑌 , which applies

𝑓 to the output of each operation, and the bottom half is:

1 + (𝑋 × 𝑋)
𝐹𝜎Mon (𝑓)−−−−−−−→ 1 + (𝑌 × 𝑌) 𝛼𝑌−−→ 𝑌 . In other words, a

homomorphism between 𝑋 and 𝑌 is a map 𝑓 on the carrier

sets that commutes with the interpretation of the monoid

operations, or simply, preserves the monoid structure.

For a fixed signature 𝜎 , the category of 𝐹𝜎 -algebras and

their morphisms form a category of algebras, written 𝐹𝜎 -Alg,
or simply, 𝜎-Alg, given by the obvious definitions of identity

and composition of the underlying functions.

3.2 Free Algebras
The category 𝜎-Alg is a category of structured sets

and structure-preserving maps, which is an example

of a concrete category, that admits a forgetful functor

𝑈 : 𝜎-Alg → Set, In our notation, 𝑈 (𝔛) is simply 𝑋 , a

fact we exploit to simplify our notation, and formalization.

The left adjoint to this forgetful functor is the free algebra

construction, also known as the term algebra (or the

absolutely free algebra without equations). We rephrase this

in more concrete terms.

Definition 3.9 (Free Algebras). A free 𝜎-algebra

construction consists of the following data:

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Symmetries in Sorting CPP’25, Jan 19–25, 2025, Denver, CO, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

• a set 𝐹 (𝑋), for every set 𝑋 ,

• a 𝜎-structure on 𝐹 (𝑋), written as𝔉(𝑋),
• a universal map 𝜂𝑋 : 𝑋 → 𝐹 (𝑋), for every 𝑋 , such that,

• for any 𝜎-algebra 𝔜, the operation assigning to each

homomorphism 𝑓 : 𝔛 → 𝔜, the map 𝑓 ◦ 𝜂𝑋 : 𝑋 → 𝑌 (or,

post-composition with 𝜂𝑋), is an equivalence.

More concretely, we are asking for a bijection between the

set of homomorphisms from the free algebra to any other

algebra, and the set of functions from the carrier set of the

free algebra to the carrier set of the other algebra. In other

words, there should be no more data in homomorphisms out

of the free algebra than there is in functions out of the carrier

set, which is the property of freeness. The inverse operation
to post-composition with 𝜂𝑋 is the universal extension of a

function to a homomorphism,

Definition 3.10 (Universal extension). The universal

extension of a function 𝑓 : 𝑋 → 𝑌 to a homomorphism out

of the free 𝜎-algebra on 𝑋 is written as 𝑓 ♯ : 𝔉(𝑋) → 𝔜.

It satisfies the identities: 𝑓 ♯ ◦ 𝜂𝑋 ∼ 𝑓 , 𝜂𝑋
♯ ∼ id𝔉 (𝑋) , and

(𝑔♯ ◦ 𝑓)♯ ∼ 𝑔♯ ◦ 𝑓 ♯.

Free algebra constructions are canonically equivalent.

Proposition 1. Suppose 𝔉(𝑋) and 𝔊(𝑋) are both free 𝜎-
algebras on 𝑋 . Then𝔉(𝑋) ≃𝔊(𝑋), natural in 𝑋 .

So far, we’ve only discussed abstract properties of free

algebras, but not actually given a construction! In type

theory, free constructions are often given by inductive types,

where the constructors are the pieces of data that freely

generate the structure, and the type-theoretic induction

principle enforces the category-theoretic universal property.

Definition 3.11 (Construction of Free Algebras). The free
𝜎-algebra on a type 𝑋 is given by the inductive type:

data Tree (X : U) : U where
leaf : X → Tree X

node : F𝜎(Tree X) → Tree X

The constructors leaf and node are, abstractly, the

generators for the universal map, and the algebra map,

respectively. Concretely, this is the type of abstract syntax

trees for terms in the signature 𝜎 – the leaves are the free

variables, and the nodes are the branching operations of the

tree, marked by the operations in 𝜎 .

Proposition 2. (Tree(X),leaf) is the free 𝜎-algebra on 𝑋 .

3.3 Equations
The algebraic framework of universal algebra we have

described so far only captures operations, not equations.

These algebras are lawless (or wild or absolutely free) –
saying the 𝐹𝜎Mon-algebras are monoids, or𝔉𝜎Mon-algebras are

free monoids is not justified. For example, by associativity,

these two trees of (N,+) should be identified as equal.

2 1 1

+

+

2 1 1

+

+

To impose equations on the operations, we adopt the point

of view of equational logic.

Definition 3.12 (Equational Signature). An equational

signature, denoted 𝜀, is a (dependent) pair consisting of:

• a set of names for equations, eq : Set,
• an arity of free variables for each equation, fv : eq → Set.

Example 3.13. The equational signature for monoids

𝜀Mon is: (Fin3, 𝜆{0 ↦→ Fin1; 1 ↦→ Fin1; 2 ↦→ Fin3}).
The three equations are the left and right unit laws,

and the associativity law – a 3-element set of names

{unitl, unitr, assoc}. The two unit laws use one free variable,
and the associativity law uses three free variables.

Just like the signature functor Definition 3.3, this produces

an equational signature functor on Set.

Definition 3.14 (Eq. Signature Functor 𝐹𝜀 : Set → Set).

𝑋 ↦→ ∑
(𝑒 : eq) 𝑋

fv(𝑒)

𝑋
𝑓
−→ 𝑌 ↦→ ∑

(𝑒 : eq) 𝑋
ar(𝑒) (𝑒,−◦𝑓)

−−−−−−→ ∑
(𝑒 : eq) 𝑌

ar(𝑒)

To build equations out of this signature, we use the 𝜎-

operations and construct trees for the left and right-hand

sides of each equation using the free variables available – a

system of equations.

Definition 3.15 (System of Equations). A system of

equations over a signature (𝜎, 𝜀), is a pair of natural

transformations:

𝓁, 𝓇 : 𝐹𝜀 ⇒ 𝔉𝜎 .

Concretely, for any set (of variables) 𝑉 , this gives a pair

of trees 𝓁𝑉 , 𝓇𝑉 : 𝐹𝜀 (𝑉) → 𝔉𝜎 (𝑉), and naturality ensures

correctness of renaming.

Example 3.16. Given 𝑥 : 𝑉 , 𝓁𝑉 (unitl, (𝑥)), 𝓇𝑉 (unitl, (𝑥))
are defined as:

𝑒 𝑥

•

𝑥

Given 𝑥 : 𝑉 , 𝓁𝑉 (unitr, (𝑥)), 𝓇𝑉 (unitr, (𝑥)) are defined as:

𝑥 𝑒

•

𝑥

Given 𝑥,𝑦, 𝑧 : 𝑉 , 𝓁𝑉 (assocr, (𝑥,𝑦, 𝑧)), 𝓇𝑉 (assocr, (𝑥,𝑦, 𝑧))
are defined as:

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

CPP’25, Jan 19–25, 2025, Denver, CO, USA Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

𝑥 𝑦 𝑧

•

•

𝑥 𝑦 𝑧

•

•

Finally, we have to say how a given 𝜎-structure 𝔛 satisfies
the system of equations 𝑇(𝜎,𝜀) . We need to assign a value to

each free variable in the equation, picking them out of the

carrier set, which is the valuation function 𝜌 : 𝑉 → 𝑋 . Given

such an assignment, we evaluate the left and right trees of

the equation, by extending 𝜌 (using Definition 3.10), that

is by construction, a homomorphism from 𝔉(𝑉) to 𝔛. To

satisfy an equation, these two evaluations should agree.

Definition 3.17 (𝔛 ⊨ 𝑇). A 𝜎-structure 𝔛 satisfies the

system of equations 𝑇(𝜎,𝜀) if for every set 𝑉 , and every

assignment 𝜌 : 𝑉 → 𝑋 , 𝜌♯ is a (co)fork:

𝐹𝜀 (𝑉) 𝔉(𝑉) 𝔛
𝜌♯

𝓁𝑉

𝓇𝑉

There is a full subcategory of 𝜎-Alg which is the

variety of algebras satisfying these equations. Constructions

of free objects for any arbitrary variety requires non-

constructive principles [Blass 1983, § 7, pg.142], in particular,

the arity sets need to be projective, so we do not give the

general construction. The non-constructive principles can

be avoided if we limit ourselves to specific constructions

where everything is finitary. Of course, HoTT/UF offers

an alternative by allowing higher generators for equations

using HITs [Univalent Foundations Program 2013]. We do

not develop the framework further, since we have enough

tools to develop the next sections.

4 Constructions of Free Monoids
In this section, we consider various constructions of free

monoids in type theory, with proofs of their universal

property. Since each construction satisfies the same

categorical universal property, by Proposition 1, these are

canonically equivalent (hence equal, by univalence) as types

(and as monoids), allowing us to transport proofs between

them. Using the unviersal property allows us to define and

prove our programs correct in one go, which is used in § 6.

4.1 Lists
Cons-lists (or sequences) are simple inductive datatypes,

well-known to functional programmers, and are the most

common representation of free monoids in programming

languages. In category theory, these correspond to Kelly’s

notion of algebraically-free monoids [Kelly 1980].

Definition 4.1 (Lists).

data List (A : U) : U where
[] : List A

_ :: _ : A → List A → List A

The (universal) generators map is the singleton: 𝜂𝐴 (𝑎) ≔
[𝑎] ≡ a :: [], the identity element is the empty list [], and
the monoid operation ++ is given by concatenation.

Proposition 3. (−)♯ lifts a function 𝑓 : 𝐴 → 𝑋 to a monoid
homomorphism 𝑓 ♯ : List(𝐴) → 𝔛.

Proposition 4 (Universal property for List). (List(𝐴), 𝜂𝐴)
is the free monoid on 𝐴.

4.2 Array
An alternate (non-inductive) representation of the free

monoid on a carrier set, or alphabet 𝐴, is 𝐴∗
, the set of all

finite words or strings or sequences of characters drawn from
𝐴, which was known in category theory from [Dubuc 1974].

In computer science, we think of this as an array, which is a

pair of a natural number 𝑛, denoting the length of the array,

and a lookup (or index) function Finn → 𝐴, mapping each

index to an element of 𝐴. In type theory, this is also often

understood as a container [Abbott et al. 2003], where N is

the type of shapes, and Fin is the type (family) of positions.

Definition 4.2 (Arrays).

Array : U → U
Array A = Σ(n : Nat) (Fin n → A)

For example, (3, 𝜆{0 ↦→ 3, 1 ↦→ 1, 2 ↦→ 2}) represents the
same list as [3, 1, 2]. The (universal) generators map is the

singleton: 𝜂𝐴 (𝑎) = (1, 𝜆{0 ↦→ 𝑎}), the identity element is

(0, 𝜆{}) and the monoid operation ++ is array concatenation.

Lemma 1. Zero-length arrays (0, 𝑓) are contractible.

Definition 4.3 (Concatenation). The concatenation

operation ++, is defined below, where ⊕ : (Finn → 𝐴) →
(Finm → 𝐴) → (Finn+m → 𝐴) is a combine operation:

(𝑛, 𝑓) ++ (𝑚,𝑔) = (𝑛 +𝑚, 𝑓 ⊕ 𝑔)

(𝑓 ⊕ 𝑔) (𝑘) =
{
𝑓 (𝑘) if 𝑘 < 𝑛

𝑔(𝑘 − 𝑛) otherwise

Proposition 5. (Array(𝐴),++) is a monoid.

Lemma 2 (Array cons). Any array (𝑆 (𝑛), 𝑓) is equal to
𝜂𝐴 (𝑓 (0)) ++ (𝑛, 𝑓 ◦ 𝑆).

Lemma 3 (Array split). For any array (𝑆 (𝑛), 𝑓) and (𝑚,𝑔),

(𝑛 +𝑚, (𝑓 ⊕ 𝑔) ◦ 𝑆) = (𝑛, 𝑓 ◦ 𝑆) ++ (𝑚,𝑔) .

Informally, this means given an non-empty array 𝑥𝑠 and

any array 𝑦𝑠 , concatenating 𝑥𝑠 with 𝑦𝑠 then dropping the

first element is the same as dropping the first element of 𝑥𝑠

then concatenating with 𝑦𝑠 .

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Symmetries in Sorting CPP’25, Jan 19–25, 2025, Denver, CO, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Definition 4.4 (Universal extension). Given a monoid 𝔛,

and a map 𝑓 : 𝐴 → 𝑋 , we define 𝑓 ♯ : Array(𝐴) → 𝑋 , by

induction on the length of the array:

𝑓 ♯ (0, 𝑔) = 𝑒

𝑓 ♯ (𝑆 (𝑛), 𝑔) = 𝑓 (𝑔(0)) • 𝑓 ♯ (𝑛,𝑔 ◦ 𝑆)

Proposition 6. (−)♯ lifts a function 𝑓 : 𝐴 → 𝑋 to a monoid
homomorphism 𝑓 ♯ : Array(𝐴) → 𝔛.

Proposition 7 (Universal property for Array).
(Array(𝐴), 𝜂𝐴) is the free monoid on 𝐴.

Proof sketch. We need to show that (−)♯ is an inverse to

(−) ◦ 𝜂𝐴. 𝑓 ♯ ◦ 𝜂𝐴 = 𝑓 for all set functions 𝑓 : 𝐴 → 𝑋 holds

trivially. To show (𝑓 ◦ 𝜂𝐴)♯ = 𝑓 for all homomorphisms

𝑓 : Array(𝐴) → 𝔛, we need ∀𝑥𝑠. (𝑓 ◦ 𝜂𝐴)♯ (𝑥𝑠) = 𝑓 (𝑥𝑠).
Lemmas 2 and 3 allow us to do induction on arrays, therefore

we can prove ∀𝑥𝑠. (𝑓 ◦ 𝜂𝐴)♯ (𝑥𝑠) = 𝑓 (𝑥𝑠) by induction on 𝑥𝑠 ,
very similarly to how this was proven for List. □

Remark. An alternative proof of the universal property

for Array can be given by directly constructing an

equivalence (of types, and monoid structures) between

Array(𝐴) and List(𝐴) (using tabulate and lookup), and then
using univalence and transport (see formalization).

5 Constructions of Free Comm. Monoids
The next step is to add commutativity to each construction

of free monoids. Informally, adding commutativity to free

monoids turns “ordered lists” to “unordered lists”, where the

ordering is the one imposed by the position or index of the

elements in the list. This is crucial to our goal of studying

sorting, as we will study sorting as a function mapping back

unordered lists to ordered lists, which is later in § 6.3.

It is known that finite multisets are (free) commutative

monoids, under the operation of multiset union: 𝑥𝑠 ∪ 𝑦𝑠 =

𝑦𝑠 ∪ 𝑥𝑠 . The order is “forgotten” in the sense that it

doesn’t matter how two multisets are union-ed together,

such as, *𝑎, 𝑎, 𝑏, 𝑐+ = *𝑏, 𝑎, 𝑐, 𝑎+ are equal as finite multisets

(justifying the bag notation). This is unlike free monoids,

where [𝑎, 𝑎, 𝑏, 𝑐] ≠ [𝑏, 𝑎, 𝑐, 𝑎] (justifying the list notation).

5.1 Free monoids with a quotient
Instead of constructing free commutative monoids directly,

the first construction we study is to take any free monoid

and quotient by symmetries. Specific instances of this

construction are given in §§ 5.2 and 5.4.

From the universal algebraic perspective developed in § 3,

this means to extend the equational theory of a given

algebraic signature with symmetries. If (𝔉(𝐴), 𝜂) is a free

monoid construction satisfying its universal property, then

we’d like to quotient 𝐹 (𝐴) by an appropriate symmetry

relation ≈. This is exactly a permutation relation!

Definition 5.1 (Permutation relation). A binary relation ≈
on free monoids is a correct permutation relation iff it:

• is reflexive, symmetric, transitive (an equivalence),

• is a congruence wrt •: 𝑎 ≈ 𝑏 → 𝑐 ≈ 𝑑 → 𝑎 • 𝑐 ≈ 𝑏 • 𝑑 ,
• is commutative: 𝑎 • 𝑏 ≈ 𝑏 • 𝑎, and
• respects (−)♯: ∀𝑓 , 𝑎 ≈ 𝑏 → 𝑓 ♯ (𝑎) = 𝑓 ♯ (𝑏).

Let 𝑞 : 𝐹 (𝐴) ↠ 𝐹 (𝐴)�≈ be the quotient (inclusion) map.

The generators map is given by 𝑞 ◦ 𝜂𝐴, the identity element

is 𝑞(𝑒), and the • operation is lifted to the quotient by

congruence.

Proposition 8. (𝔉(𝐴)�≈, •, 𝑞(𝑒)) is a commutative monoid.

For clarity, we will use (̂−) to denote the extension operation
of 𝐹 (𝐴), and (−)♯ for the extension operation of 𝐹 (𝐴)�≈.

Definition 5.2. Given a commutative monoid 𝔛 and a map

𝑓 : 𝐴 → 𝑋 , we define 𝑓 ♯ : 𝔉(𝐴)�≈ → 𝔛 as follows: we first

obtain 𝑓 : 𝔉(𝐴) → 𝔛 by universal property of 𝐹 , and lift it

to𝔉(𝐴)�≈ → 𝔛, which is allowed since ≈ respects (−)♯.

Proposition 9 (Universal property for 𝔉(𝐴)�≈).
(𝔉(𝐴)�≈, 𝜂𝐴 : 𝐴

𝜂𝐴−−→ 𝔉(𝐴)
𝑞
−→ 𝔉(𝐴)�≈) is the free comm.

monoid on 𝐴.

5.2 Lists quotiented by permutation
A specific instance of this construction is List quotiented by
a permutation relation to get commutativity. We study one

such construction (PList), considered in [Joram and Veltri

2023], who give a proof that PList is equivalent to the free

commutativemonoid (constructed as aHIT). We give a direct

proof of its universal property using our generalisation.

Of course, there are many permutation relations in

the literature, we consider the one which swaps any two

adjacent elements somewhere in the middle of the list.

Definition 5.3 (PList).

data Perm (A : U) : List A → List A → U where
perm-refl : ∀ {xs} → Perm xs xs

perm-swap : ∀ {x y xs ys zs}

→ Perm (xs ++ x :: y :: ys) zs

→ Perm (xs ++ y :: x :: ys) zs

PList : U → U
PList A = List A � Perm

By § 5.1, it suffices to show Perm satisfies the axioms of

permutation relation to show PList is the free commutative

monoid.

Proposition 10. Let 𝔛 be a commutative monoid, and
𝑓 : 𝐴 → 𝑋 . For 𝑥,𝑦 : 𝐴 and 𝑥𝑠,𝑦𝑠 : PList(𝐴), 𝑓 ♯ (𝑥𝑠 ++ 𝑥 ::

𝑦 :: 𝑦𝑠) = 𝑓 ♯ (𝑥𝑠 ++ 𝑦 :: 𝑥 :: 𝑦𝑠). Hence, Perm respects (−)♯.
5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

CPP’25, Jan 19–25, 2025, Denver, CO, USA Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Remarks. With this representation it is very easy to lift

functions and properties defined on List to PList since

PList is a quotient of List. The inductive nature of PList
makes it very easy to define algorithms and proofs that

are inductive in nature, e.g. defining insertion sort on PList
is very simple since insertion sort inductively sorts a list,

which we can easily do by pattern matching on PList since
the construction of PList is definitionally inductive. This

property also makes it such that oftentimes inductively

constructed PList would normalize to the simplest form of

the PList, e.g. 𝑞([𝑥]) ++𝑞([𝑦, 𝑧]) normalizes to 𝑞([𝑥,𝑦, 𝑧]) by
definition, saving the efforts of defining auxillary lemmas to

prove their equality.

This inductive nature, however, makes it difficult to define

efficient operations on PList. Consider a divide-and-conquer
algorithm such as merge sort, which involves partitioning a

PList of length 𝑛 +𝑚 into two smaller PList of length 𝑛 and

length𝑚. The inductive nature of PList makes it such that

we must iterate all 𝑛 elements before we can make such a

partition, thus making PList unintuitive to work with when

we want to reason with operations that involve arbitrary

partitioning.

5.3 Swap-List
Informally, quotients are defined by generating all the

points, then quotienting out into equivalence classes by

the congruence relation. Alternately, HITs use generators

(points) and higher generators (paths) (and higher higher

generators and so on. . .). We can define free commutative

monoids using HITs were adjacent swaps generate all

symmetries, for example swap-lists taken from [Choudhury

and Fiore 2023] (and in the Cubical library).

data SList (A : U) : U where
[] : SList A

_ :: _ : A → SList A → SList A

swap : ∀ x y xs → x :: y :: xs = y :: x :: xs

trunc : ∀ x y → (p q : x = y) → p = q

Remarks. Much like PList and List, SList is inductively

defined, therefore making it very intuitive to reason with

when defining inductive operations or inductive proofs

on SList, however difficult to reason with when defining

operations that involve arbitrary partitioning, for reasons

similar to those given in § 5.2.

5.4 Bag
Alternatively, we can also quotient Array by symmetries

to get commutativity. This construction is first considered

in [Altenkirch et al. 2011] and [Li 2015], then partially

considered in [Choudhury and Fiore 2023], and also

in [Joram and Veltri 2023], who gave a similar construction,

where only the index function is quotiented, instead of

the entire array. [Danielsson 2012] also considered Bag as

a setoid relation on List in an intensional MLTT setting.

[Joram and Veltri 2023] prove that their version of Bag is

the free commutative monoid by equivalence to the other

HIT constructions. We give a direct proof of its universal

property instead, using the technology we have developed.

Definition 5.4 (Bag).

≈ : Array A → Array A → U
(n , f) ≈ (m , g) = Σ(𝜎 : Fin n ≃ Fin m) v = w ◦ 𝜎

Bag : U → U
Bag A = Array A � _≈_

Note that by the pigeonhole principle, 𝜎 can only be

constructed when 𝑛 = 𝑚, though this requires a proof in

type theory (see the formalization). Conceptually, we are

quotienting Array by an automorphism on the indices.

We have already given a proof of Array being the free

monoid in § 4.2. By § 5.1 it suffices to show ≈ satisfies the

axioms of permutation relations to show that Bag is the free
commutative monoid.

Proposition 11. ≈ is a equivalence relation.

Proposition 12. ≈ is congruent wrt to ++.

Proof. Given (𝑛, 𝑓) ≈ (𝑚,𝑔) by 𝜎 and (𝑢, 𝑝) ≈ (𝑣, 𝑞) by 𝜙 ,

we want to show (𝑛, 𝑓) ++ (𝑢, 𝑝) ≈ (𝑚,𝑔) ++ (𝑣, 𝑞) by some 𝜏 .

We construct 𝜏 as follows:

𝜏 ≔ Finn+u
∼−→ Finn + Finu

𝜎,𝜙
−−−→ Finm + Finv

∼−→ Finm+v

which operationally performs:

{0, 1, . . . , 𝑛 − 1, 𝑛, 𝑛 + 1, . . . , 𝑛 + 𝑢 − 1}

{𝜎 (0), 𝜎 (1) . . . , 𝜎 (𝑛 − 1), 𝜙 (0), 𝜙 (1), . . . , 𝜙 (𝑢 − 1)}
𝜎,𝜙 .

□

Proposition 13. ≈ is commutative.

Proof. We want to show for any arrays (𝑛, 𝑓) and (𝑚,𝑔),
(𝑛, 𝑓) • (𝑚,𝑔) ≈ (𝑚,𝑔) • (𝑛, 𝑓) by some 𝜙 . We can

use combinators from formal operations in symmetric rig

groupoids [Choudhury, Karwowski, et al. 2022] to define 𝜙 :

𝜙 ≔ Finn+m
∼−→ Finn + Finm

swap+−−−−→ Finm + Finn
∼−→ Finm+n

which operationally performs:

{0, 1, . . . , 𝑛 − 1, 𝑛, 𝑛 + 1, . . . , 𝑛 +𝑚 − 1}

{𝑛, 𝑛 + 1 . . . , 𝑛 +𝑚 − 1, 0, 1, . . . , 𝑛 − 1}
𝜙

□

Proposition 14. ≈ respects (−)♯ for arrays.
6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Symmetries in Sorting CPP’25, Jan 19–25, 2025, Denver, CO, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

It suffices to show that 𝑓 ♯ is invariant under permutation: for

all 𝜙 : Finn
∼−→ Finn, 𝑓 ♯ (𝑛, 𝑖) = 𝑓 ♯ (𝑛, 𝑖 ◦ 𝜙). To prove this we

first need to develop some formal combinatorics of punching
in and punching out indices. These operations are borrowed
from [Mozler 2021] and developed further in [Choudhury,

Karwowski, et al. 2022] for studying permutation codes.

Lemma 4. Given 𝜙 : FinS(n)
∼−→ FinS(n) , there is a

permutation 𝜏 : FinS(n)
∼−→ FinS(n) such that 𝜏 (0) = 0, and

𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜙) = 𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜏).

Proof. Let 𝑘 be 𝜙−1 (0), and 𝑘 + 𝑗 = 𝑆 (𝑛), we construct 𝜏 :

𝜏 ≔ FinS(n)
𝜙
−→ FinS(n)

∼−→ Fink+j
∼−→ Fink + Finj

swap+−−−−→ Finj + Fink
∼−→ Finj+k

∼−→ FinS(n)

{0, 1, 2, . . . , 𝑘, 𝑘 + 1, 𝑘 + 2, . . .}

{𝑥,𝑦, 𝑧, . . . , 0, 𝑢, 𝑣, . . .}
𝜙

{0, 1, 2, . . . , 𝑘, 𝑘 + 1, 𝑘 + 2, . . .}

{0, 𝑢, 𝑣, . . . , 𝑥,𝑦, 𝑧, . . .}
𝜏

It is trivial to show 𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜙) = 𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜏), since
the only operation on indices in 𝜏 is swap+. It suffices

to show (𝑆 (𝑛), 𝑖 ◦ 𝜙) can be decomposed into two arrays

such that (𝑆 (𝑛), 𝑖 ◦ 𝜙) = (𝑘,𝑔) ++ (𝑗, ℎ) for some 𝑔 and ℎ.

Since the image of 𝑓 ♯ is a commutative monoid, and 𝑓 ♯ is a

homomorphism, 𝑓 ♯ ((𝑘,𝑔) ++ (𝑗, ℎ)) = 𝑓 ♯ (𝑘,𝑔) • 𝑓 ♯ (𝑗, ℎ) =

𝑓 ♯ (𝑗, ℎ) • 𝑓 ♯ (𝑘,𝑔) = 𝑓 ♯ ((𝑗, ℎ) ++ (𝑘,𝑔)), thereby proving

𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜙) = 𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜏).
□

Lemma 5. Given 𝜏 : FinS(n)
∼−→ FinS(n) where 𝜏 (0) = 0, there

is a𝜓 : Finn
∼−→ Finn such that 𝜏 ◦ 𝑆 = 𝑆 ◦𝜓 .

Proof. We construct𝜓 as 𝜓 (𝑥) = 𝜏 (𝑆 (𝑥)) − 1. Since 𝜏 maps

only 0 to 0 by assumption, ∀𝑥 . 𝜏 (𝑆 (𝑥)) > 0, therefore the

(−1) is well defined. This is the special case for 𝑘 = 0 in

the punch-in and punch-out equivalence for Lehmer codes

in [Choudhury, Karwowski, et al. 2022].

{0, 1, 2, 3, . . .}

{0, 𝑥,𝑦, 𝑧 . . .}
𝜏

{0, 1, 2, . . .}

{𝑥 − 1, 𝑦 − 1, 𝑧 − 1 . . .}
𝜓

□

Theorem 5.5 (Permutation invariance). For all 𝜙 : Finn
∼−→

Finn, 𝑓 ♯ (𝑛, 𝑖) = 𝑓 ♯ (𝑛, 𝑖 ◦ 𝜙).

Proof. By induction on 𝑛.

• On 𝑛 = 0, 𝑓 ♯ (0, 𝑖) = 𝑓 ♯ (0, 𝑖 ◦ 𝜙) = 𝑒 .

• On 𝑛 = 𝑆 (𝑚),
𝑓 ♯ (𝑆 (𝑚), 𝑖 ◦ 𝜙)

= 𝑓 ♯ (𝑆 (𝑚), 𝑖 ◦ 𝜏) by Lemma 4

= 𝑓 (𝑖 (𝜏 (0))) • 𝑓 ♯ (𝑚, 𝑖 ◦ 𝜏 ◦ 𝑆) by definition of (−)♯
= 𝑓 (𝑖 (0)) • 𝑓 ♯ (𝑚, 𝑖 ◦ 𝜏 ◦ 𝑆) by construction of 𝜏

= 𝑓 (𝑖 (0)) • 𝑓 ♯ (𝑚, 𝑖 ◦ 𝑆 ◦𝜓) by Lemma 5

= 𝑓 (𝑖 (0)) • 𝑓 ♯ (𝑚, 𝑖 ◦ 𝑆) induction

= 𝑓 ♯ (𝑆 (𝑚), 𝑖) by definition of (−)♯

□

Remarks. Unlike PList and SList, Bag and its underlying

construction Array are not inductively defined, making it

difficult to work with when trying to do induction on them.

For example, in the proof Proposition 7, two Lemmas 2 and 3

are needed to do induction on Array, as opposed to List
and its quotients, where we can do induction simply by

pattern matching. Much like PList, when defining functions

on Bag, we need to show they respect ≈, i.e. 𝑎𝑠 ≈ 𝑏𝑠 →
𝑓 (𝑎𝑠) = 𝑓 (𝑏𝑠). This is notably much more difficult than

PList and SList, because whereas with PList and SList we
only need to consider "small permutations" (i.e. swapping

adjacent elements),withBagwe need to consider all possible
permutations. For example, in the proof of Theorem 5.5, we

need to first construct a 𝜏 which satisfies 𝜏 (0) = 0 and prove

𝑓 ♯ (𝑛, 𝑖 ◦ 𝜎) = 𝑓 ♯ (𝑛, 𝑖 ◦ 𝜏) before we can apply induction.

6 Application: Sorting Functions
Wewill nowput towork the universal properties of our types

of (ordered) lists and unordered lists, to define operations

on them systematically, which are mathematically sound,

and reason about them. First, we explore definitions

of various operations on both free monoids and free

commutative monoids. By univalence (and the structure

identity principle), everything henceforth holds for any

presentation of free monoids and free commutative monoids,

therefore we avoid picking a specific construction. We

use F (𝐴) to denote the free monoid or free commutative

monoid on 𝐴, L(𝐴) to exclusively denote the free monoid

construction, and M(𝐴) to exclusively denote the free

commutative monoid construction.

For example length is a common operation defined

inductively for List, but usually in proof engineering,

properties about length, e.g. length(𝑥𝑠 ++𝑦𝑠) = length(𝑥𝑠) +
length(𝑦𝑠), are proven externally. In our framework of

free algebras, where the (−)♯ operation is a correct-by-

construction homomorphism, we can define operations like

length directly by universal extension, which also gives us a

proof that they are homomorphisms for free. Note, the fold

operation in functional programming is the homomorphism

mapping out into the monoid of endofunctions. A further

application of the universal property is to prove two

different types are equal, by showing they both satisfy

the same universal property (see Proposition 1), which

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

CPP’25, Jan 19–25, 2025, Denver, CO, USA Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

is desirable especially when proving a direct equivalence

between the two types turns out to be a difficult exercise in

combinatorics.

6.1 Prelude
Any presentation of free monoids or free commutative

monoids has a length : F (𝐴) → N function. N is a monoid

with (0,+), and further, the + operation is commutative.

Definition 6.1 (length). The length homomorphism is

defined as length ≔ (𝜆𝑥 . 1)♯ : F (𝐴) → N.

Going further, any presentation of free monoids or

free commutative monoids has a membership predicate

− ∈ − : 𝐴 → F (𝐴) → hProp, for any set 𝐴. For extension,

we use the fact that hProp forms a (commutative) monoid

under disjunction: ∨ and false: ⊥.

Definition 6.2 (∈). The membership predicate on a set 𝐴

for each element 𝑥 : 𝐴 is 𝑥 ∈ − ≔よ𝐴 (𝑥)
♯
: F (𝐴) → hProp,

where we defineよ𝐴 (𝑥) ≔ 𝜆𝑦. 𝑥 = 𝑦 : 𝐴 → hProp.

よ is formally the Yoneda map under the “types

are groupoids” correspondence, where 𝑥 : 𝐴 is being

sent to its representable in the Hom-groupoid (formed

by the identity type), of type hProp. Note that the

proofs of (commutative) monoid laws for hProp use

equality, which requires the use of univalence (or at

least, propositional extensionality). By construction, this

membership predicate satisfies its homomorphic properties

(the colluquial here/there constructors for de Bruijn

indices).

We note that hProp is actually one type level higher

than 𝐴. To make the type level explicit, 𝐴 is of type level

ℓ , and since hPropℓ is the type of all types 𝑋 : Uℓ that are

mere propositions, hPropℓ has type level ℓ + 1. While we

can reduce to the type level of hPropℓ to ℓ if we assume

Voevodsky’s propositional resizing axiom [Voevodsky 2011],

we chose not to do so and work within a relative monad

framework similar to [Choudhury and Fiore 2023, Section 3].

In the formalization, (−)♯ is type level polymorphic to

accommodate for this. We explain this further in § 7.

More generally, any presentation of free (commutative)

monoids F (𝐴) also supports the Any and All predicates,
which allow us to lift a predicate 𝐴 → hProp (on 𝐴), to

any or all elements of 𝑥𝑠 : F (𝐴), respectively. In fact, hProp
forms a (commutative) monoid in two different ways: (⊥,∨)
and (⊤,∧) (disjunction and conjunction), which are the two

different ways to get Any and All, respectively.

Definition 6.3 (Any and All).

Any(𝑃) ≔ 𝑃♯
: F (𝐴) → (hProp,⊥,∨)

All(𝑃) ≔ 𝑃♯
: F (𝐴) → (hProp,⊤,∧)

Remark. Note that Cubical Agda has problems with

indexing over HITs, hence it is preferable to program with

our universal properties, such as when defining Any and

All, because the (indexed) inductive definitions of these

predicates get stuck on transp terms.

There is a head function on lists, which is a function that

returns the first element of a non-empty list. Formally, this

is a monoid homomorphism from L(𝐴) to 1 +𝐴.

Definition 6.4 (head). The head homomorphism is defined

as head ≔ inr♯ : L(𝐴) → 1+𝐴, where the monoid structure

on 1+𝐴 has unit 𝑒 ≔ inl(★) : 1+𝐴, and multiplication picks

the leftmost element that is defined.

inl(★) ⊕ 𝑏 ≔ 𝑏

inr(𝑎) ⊕ 𝑏 ≔ inr(𝑎)
Note that the monoid operation ⊕ is not commutative,

since swapping the input arguments to ⊕ would return

the leftmost or rightmost element. To make it commutative

would require a canonical way to pick between two elements

– this leads us to the next section.

6.2 Total orders
First, we recall the axioms of a total order ≤ on a set 𝐴.

Definition 6.5 (Total order). A total order on a set 𝐴 is a

relation ≤ : 𝐴 → 𝐴 → hProp that satisfies:

• reflexivity: 𝑥 ≤ 𝑥 ,

• transitivity: if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧,

• antisymmetry: if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 , then 𝑥 = 𝑦,

• strong-connectedness: ∀𝑥,𝑦, either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 .

Note that either-or means that this is a (truncated) logical

disjunction. In the context of this paper, we want to make a

distinction between “decidable total order” and “total order”.

A decidable total order requires the≤ relation to be decidable:

• decidability: ∀𝑥,𝑦, we have 𝑥 ≤ 𝑦 + ¬(𝑥 ≤ 𝑦).

This strengthens the strong-connectedness axiom, where

we have either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 merely as a proposition, but

decidability allows us to actually compute if 𝑥 ≤ 𝑦 is true.

Proposition 15. In a decidable total order, it holds that
∀𝑥,𝑦, (𝑥 ≤ 𝑦) + (𝑦 ≤ 𝑥). Further, this makes𝐴 discrete, that is
∀𝑥,𝑦, (𝑥 = 𝑦) + (𝑥 ≠ 𝑦).

An equivalent way to define a total order is using a binary

meet operation (without starting from an ordering relation).

Definition 6.6 (Meet semi-lattice). A meet semi-lattice is a

set 𝐴 with a binary operation − ⊓ − : 𝐴 → 𝐴 → 𝐴 that is:

• idempotent: 𝑥 ⊓ 𝑥 = 𝑥 ,

• associative: (𝑥 ⊓ 𝑦) ⊓ 𝑧 = 𝑥 ⊓ (𝑦 ⊓ 𝑧),
• commutative: 𝑥 ⊓ 𝑦 = 𝑦 ⊓ 𝑥 .

A strongly-connected meet semi-lattice further satisfies:

• strong-connectedness: ∀𝑥,𝑦, either 𝑥⊓𝑦 = 𝑥 or 𝑥⊓𝑦 = 𝑦.

A total meet semi-lattice strengthens this to:

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Symmetries in Sorting CPP’25, Jan 19–25, 2025, Denver, CO, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

• totality: ∀𝑥,𝑦, (𝑥 ⊓ 𝑦 = 𝑥) + (𝑥 ⊓ 𝑦 = 𝑦).

Proposition 16. A total order ≤ on a set 𝐴 is equivalent to a
strongly-connected meet semi-lattice structure on 𝐴. Further,
a decidable total order on 𝐴 induces a total meet semi-lattice
structure on 𝐴.

Proof sketch. Given a (mere) total order ≤ on a set 𝐴, we

define 𝑥 ⊓ 𝑦 ≔ if 𝑥 ≤ 𝑦 then𝑥 else𝑦. Crucially, this map is

locally-constant, allowing us to eliminate from an hProp to

an hSet. Meets satisfy the universal property of products,

that is, 𝑐 ≤ 𝑎 ⊓ 𝑏 ⇔ 𝑐 ≤ 𝑎 ∧ 𝑐 ≤ 𝑏, and the axioms follow

by calculation usingよ-arguments. Conversely, given a meet

semi-lattice, we define 𝑥 ≤ 𝑦 ≔ 𝑥 ⊓ 𝑦 = 𝑥 , which defines

an hProp-valued total ordering relation. If the total order is

decidable, we use the discreteness of 𝐴 from Proposition 15.

□

Finally, tying this back to Definition 6.4, we have the

following for free commutative monoids.

Definition 6.7 (head). Assume a total order ≤ on a set 𝐴.

We define a commutative monoid structure on 1 + 𝐴, with

unit 𝑒 ≔ inl(★) : 1 +𝐴, and multiplication defined as:

inl(★) ⊕ 𝑏 ≔ 𝑏

inr(𝑎) ⊕ inl(★) ≔ inr(𝑎)
inr(𝑎) ⊕ inr(𝑏) ≔ inr(𝑎 ⊓ 𝑏) .

This gives a homomorphism head ≔ inr♯ : M(𝐴) → 1 +𝐴,

which picks out the least element of the free commutative

monoid.

6.3 Sorting functions
The free commutative monoid is also a monoid, hence, there

is a canonical monoid homomorphism 𝑞 : L(𝐴) → M(𝐴),
which is given by 𝜂𝐴

♯
. SinceM(𝐴) is (upto equivalence), a

quotient of L(𝐴) by symmetries (or a permutation relation),

it is a surjection (in particular, a regular epimorphism in Set
as constructed in type theory). Concretely,𝑞 simply includes

the elements of L(𝐴) into equivalence classes of lists in

M(𝐴), which “forgets” the order that was imposed by the

indexing of the list.

Classically, assuming the Axiom of Choice would allow us

to construct a section (right-inverse) to the surjection 𝑞, that

is, a function 𝑠 : M(𝐴) → L(𝐴) such that ∀𝑥 . 𝑞(𝑠 (𝑥)) = 𝑥 .

Or in informal terms, given the surjective inclusion into

the quotient, a section (uniformly) picks out a canonical

representative for each equivalence class. Constructively,

does 𝑞 have a section? If symmetry kills the order, can it

be resurrected?

L(𝐴) M(𝐴)
𝑠

𝑞

Figure 1. Relationship of L(𝐴) andM(𝐴)

Viewing the quotienting relation as a permutation

relation (from § 5.1), a section 𝑠 to 𝑞 has to pick out

canonical representatives of equivalence classes generated

by permutations. Using SList as an example, 𝑠 (𝑥 :: 𝑦 :: 𝑥𝑠) =
𝑠 (𝑦 :: 𝑥 :: 𝑥𝑠) for any 𝑥,𝑦 : 𝐴 and 𝑥𝑠 : SList(𝐴), and since

it must also respect ∀𝑥𝑠. 𝑞(𝑠 (𝑥𝑠)) = 𝑥𝑠 , 𝑠 must preserve all

the elements of 𝑥𝑠 . It cannot be a trivial function such as

𝜆 𝑥𝑠.[] – it must produce a permutation of the elements

of 𝑠! But to place these elements side-by-side in the list,

𝑠 must somehow impose an order on 𝐴 (invariant under

permutation), turning unordered lists of 𝐴 into ordered lists

of𝐴. Axiom ofChoice (AC) giving us a section 𝑠 to𝑞 “for free”

is analagous to how AC implies the well-ordering principle,

which states every set can be well-ordered. If we assumed

AC our problem would be trivial! Instead we study how

to constructively define such a section, and in fact, that is

exactly the extensional view of a sorting algorithm, and the

implications of its existence is that 𝐴 can be ordered, or

sorted.

6.3.1 Section from Order.

Proposition 17. Assume a decidable total order on 𝐴. There
is a sort function 𝑠 : M(𝐴) → L(𝐴) which constructs a section
to 𝑞 : L(𝐴) ↠ M(𝐴)

Proof sketch. We can construct such a sort function by

implementing any sorting algorithm. In our formalization

we chose insertion sort, because it can be defined easily

using the inductive structure of SList(𝐴) and List(𝐴). To
implement other sorting algorithms like mergesort, other

representations such as Bag and Array would be preferable,

as explained in § 5.4. To see how this proposition holds:

𝑞(𝑠 (𝑥𝑠)) orders an unordered list 𝑥𝑠 by 𝑠 , and discards the

order again by 𝑞 – imposing and then forgetting an order on

𝑥𝑠 simply permutes its elements,which proves𝑞 ◦ 𝑠 ∼ id. □

This is not surprising. . .we want to go the other way.

6.3.2 Order from Section. The previous section allowed

us to construct a section – how do we know this is a correct
sort function? At this point we ask: if we can construct a

section from order, can we construct an order from section?

Indeed, just by the virtue of 𝑠 being a section,we can (almost)

construct a total-ordering relation on the carrier set!

Definition 6.8. Given a section 𝑠 , we define:

least(𝑥𝑠) ≔ head(𝑠 (𝑥𝑠))
𝑥 ≼𝑠 𝑦 ≔ least(*𝑥,𝑦+) = inr(𝑥) .

That is, we take the two-element bag *𝑥,𝑦+, “sort” it by 𝑠 ,
and test if the head element is 𝑥 . Note, this is equivalent to

𝑥 ≼𝑠 𝑦 ≔ 𝑠*𝑥,𝑦+ = [𝑥,𝑦], because 𝑠 preserves length, and
the second element is forced to be 𝑦.

Proposition 18. ≼𝑠 is reflexive, antisymmetric, and total.
9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

CPP’25, Jan 19–25, 2025, Denver, CO, USA Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Proof. For all 𝑥 , least(*𝑥, 𝑥+) must be inr(𝑥), therefore 𝑥 ≼𝑠

𝑥 , giving reflexivity. For all 𝑥 and𝑦, given 𝑥 ≼𝑠 𝑦 and𝑦 ≼𝑠 𝑥 ,

we have least(*𝑥,𝑦+) = inr(𝑥) and least(*𝑦, 𝑥+) = inr(𝑦).
Since *𝑥,𝑦+ = *𝑦, 𝑥+, least(*𝑥,𝑦+) = least(*𝑦, 𝑥+), therefore
we have 𝑥 = 𝑦, giving antisymmetry. For all 𝑥 and 𝑦,

least(*𝑥,𝑦+) is merely either inr(𝑥) or inr(𝑦), therefore we
have merely either 𝑥 ≼𝑠 𝑦 or 𝑦 ≼𝑠 𝑥 , giving totality. □

Although 𝑠 correctly orders 2-element bags, it doesn’t

necessarily sort 3 or more elements – ≼𝑠 is not necessarily

transitive (a counterexample is given in Proposition 28). We

will enforce this by imposing additional constraints on the

image of 𝑠 .

Definition 6.9 (− ∈ im(𝑠)). The fiber of 𝑠 over 𝑥𝑠 : L(𝐴) is
given by fib𝑠 (𝑥𝑠) ≔

∑
(𝑦𝑠 : M(𝐴)) 𝑠 (𝑦𝑠) = 𝑥𝑠 . The image of 𝑠

is given by im(𝑠) ≔
∑

(𝑥𝑠 : L(𝐴)) ∥fib𝑠 (𝑥𝑠)∥−1. Simplifying,

we say that 𝑥𝑠 : L(𝐴) is “in the image of 𝑠”, or, 𝑥𝑠 ∈ im(𝑠), if
there merely exists a 𝑦𝑠 : M(𝐴) such that 𝑠 (𝑦𝑠) = 𝑥𝑠 .

If 𝑠 were a sort function, the image of 𝑠 would be the set

of 𝑠-“sorted” lists, therefore 𝑥𝑠 ∈ im(𝑠) would imply 𝑥𝑠 is

a correctly 𝑠-“sorted” list. First, we note that the 2-element

case is correct.

Proposition 19. 𝑥 ≼𝑠 𝑦 iff [𝑥,𝑦] ∈ im(𝑠).

Then, we state the first axiom on 𝑠 .

Definition 6.10 (im-cut). A section 𝑠 satisfies im-cut iff for

all 𝑥,𝑦, 𝑥𝑠:

𝑦 ∈ 𝑥 :: 𝑥𝑠 ∧ 𝑥 :: 𝑥𝑠 ∈ im(𝑠) → [𝑥,𝑦] ∈ im(𝑠) .

We use the definition of list membership from Definition 6.2.

The ∈ symbol is intentionally overloaded to make the axiom

look like a logical “cut” rule. Inforamlly, it says that the head

of an 𝑠-“sorted” list is the least element of the list.

Proposition 20. If𝐴 has a total order≤, insertion sort defined
using ≤ satisfies im-cut.

Proposition 21. If 𝑠 satisfies im-cut, ≼𝑠 is transitive.

Proof. Given 𝑥 ≼𝑠 𝑦 and 𝑦 ≼𝑠 𝑧, we want to show 𝑥 ≼𝑠

𝑧. Consider the 3-element bag *𝑥,𝑦, 𝑧+ : M(𝐴). Let 𝑢 be

least(*𝑥,𝑦, 𝑧+), by Definition 6.10 and Proposition 19, we

have 𝑢 ≼𝑠 𝑥 ∧ 𝑢 ≼𝑠 𝑦 ∧ 𝑢 ≼𝑠 𝑧. Since 𝑢 ∈ *𝑥,𝑦, 𝑧+, 𝑢
must be one of the elements. If 𝑢 = 𝑥 we have 𝑥 ≼𝑠 𝑧. If

𝑢 = 𝑦 we have 𝑦 ≼𝑠 𝑥 , and since 𝑥 ≼𝑠 𝑦 and 𝑦 ≼𝑠 𝑧 by

assumption, we have 𝑥 = 𝑦 by antisymmetry, and then we

have 𝑥 ≼𝑠 𝑧 by substitution. Finally, if𝑢 = 𝑧, we have 𝑧 ≼𝑠 𝑦,

and since𝑦 ≼𝑠 𝑧 and𝑥 ≼𝑠 𝑦 by assumption,we have 𝑧 = 𝑦 by

antisymmetry, and then we have 𝑥 ≼𝑠 𝑧 by substitution. □

6.3.3 Embedding orders into sections. Following from
Propositions 18 and 21, and Proposition 20, we have shown

that a section 𝑠 that satisfies im-cut produces a total

order 𝑥 ≼𝑠 𝑦 ≔ least(*𝑥,𝑦+) = inr(𝑥), and a total

order ≤ on the carrier set produces a section satisfying

im-cut, constructed by sorting with ≤. This constitutes an
embedding of decidable total orders into sections satisfying

im-cut.

Proposition 22. Assume 𝐴 has a decidable total order ≤, we
can construct a section 𝑠 that satisfies im-cut, such that ≼𝑠

constructed from 𝑠 is equivalent to ≤.

Proof. By the insertion sort algorithm parameterized by ≤,
it holds that [𝑥,𝑦] ∈ im(𝑠) iff 𝑥 ≤ 𝑦. By Proposition 19, we

have 𝑥 ≼𝑠 𝑦 iff 𝑥 ≤ 𝑦. We now have a total order 𝑥 ≼𝑠 𝑦

equivalent to 𝑥 ≤ 𝑦. □

6.3.4 Equivalence of order and sections. We want to

upgrade the embedding to an isomorphism, and it remains

to show that we can turn a section satisfying im-cut to a

total order ≼𝑠 , then construct the same section back from

≼𝑠 . Unfortunately, this fails (see Proposition 29)! We then

introduce our second axiom of sorting.

Definition 6.11 (im-cons). A section 𝑠 satisfies im-cons iff
for all 𝑥, 𝑥𝑠 ,

𝑥 :: 𝑥𝑠 ∈ im(𝑠) → 𝑥𝑠 ∈ im(𝑠)

This says that 𝑠-“sorted” lists are downwards-closed under

cons-ing, that is, the tail of an 𝑠-“sorted” list is also 𝑠-“sorted”.

To prove the correctness of our axioms, first we need to show

that a section 𝑠 satisfying im-cut and im-cons is equal to
insertion sort parameterized by the ≼𝑠 constructed from 𝑠 .

In fact, the axioms we have introduced are equivalent to the

standard inductive characterization of sorted lists, found in

textbooks, such as in [Appel 2023].

data Sorted (≤ : A → A → U) : List A → U where
sorted-[] : Sorted []

sorted-𝜂 : ∀ x → Sorted [x]

sorted- :: : ∀ x y zs → x ≤ y

→ Sorted (y :: zs) → Sorted (x :: y :: zs)

Note that Sorted≤ (𝑥𝑠) is a proposition for every 𝑥𝑠 , and

forces the list 𝑥𝑠 to be permuted in a unique way.

Lemma 6. Given an order ≤, for any 𝑥𝑠,𝑦𝑠 : L(𝐴), 𝑞(𝑥𝑠) =
𝑞(𝑦𝑠) ∧ Sorted≤ (𝑥𝑠) ∧ Sorted≤ (𝑦𝑠) → 𝑥𝑠 = 𝑦𝑠 .

Insertion sort by ≤ always produces lists that satisfy

Sorted≤ . Functions that also produce lists satisfying Sorted≤
are equal to insertion sort by function extensionality.

Proposition 23. Given an order ≤, if a section 𝑠 always
produces sorted list, i.e. ∀𝑥𝑠. Sorted≤ (𝑠 (𝑥𝑠)), 𝑠 is equal to
insertion sort by ≤.

Finally, this gives us correctness of our axioms.

Proposition 24. Given a section 𝑠 that satisfies im-cut
and im-cons, and ≼𝑠 the order derived from 𝑠 , then for all
𝑥𝑠 : M(𝐴), it holds that Sorted≼𝑠

(𝑠 (𝑥𝑠)). Equivalently, for
all lists 𝑥𝑠 : L(𝐴), it holds that 𝑥𝑠 ∈ im(𝑠) iff Sorted≼𝑠

(𝑥𝑠).
10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Symmetries in Sorting CPP’25, Jan 19–25, 2025, Denver, CO, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Proof. We inspect the length of 𝑥𝑠 : M(𝐴). For lengths 0 and
1, this holds trivially. Otherwise, we proceed by induction:

given a 𝑥𝑠 : M(𝐴) of length ≥ 2, let 𝑠 (𝑥𝑠) = 𝑥 :: 𝑦 :: 𝑦𝑠 .

We need to show 𝑥 ≼𝑠 𝑦 ∧ Sorted≼𝑠
(𝑦 :: 𝑦𝑠) to construct

Sorted≼𝑠
(𝑥 :: 𝑦 :: 𝑦𝑠). By im-cut, we have 𝑥 ≼𝑠 𝑦, and by

im-cons, we inductively prove Sorted≼𝑠
(𝑦 :: 𝑦𝑠). □

Lemma 7. Given a decidable total order ≤ on 𝐴, we can
construct a section 𝑡≤ satisfying im-cut and im-cons, such that,
for the order ≼𝑠 derived from 𝑠 , we have 𝑡≼𝑠

= 𝑠 .

Proof. From 𝑠 we can construct a decidable total order

≼𝑠 since 𝑠 satisfies im-cut and 𝐴 has decidable equality

by assumption. We construct 𝑡≼𝑠
as insertion sort

parameterized by ≼𝑠 constructed from 𝑠 . By Proposition 23

and Proposition 24, 𝑠 = 𝑡≼𝑠
. □

Proposition 25. Assume𝐴 has a decidable total order≤, then
𝐴 has decidable equality.

Proof. We decide if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 , and by cases:

• if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 : by antisymmetry, 𝑥 = 𝑦.

• if ¬(𝑥 ≤ 𝑦) and 𝑦 ≤ 𝑥 : assuming 𝑥 = 𝑦, have 𝑥 ≤ 𝑦,

leading to contradiction by ¬(𝑥 ≤ 𝑦), hence 𝑥 ≠ 𝑦.

• if 𝑥 ≤ 𝑦 and ¬(𝑦 ≤ 𝑥): similar to the previous case.

• if ¬(𝑥 ≤ 𝑦) and ¬(𝑦 ≤ 𝑥): by totality, either 𝑥 ≤ 𝑦 or

𝑦 ≤ 𝑥 , which leads to a contradiction.

□

We can now state and prove our main theorem.

Definition 6.12 (Sorting function). A sorting function is

a section 𝑠 : M(𝐴) → L(𝐴) to the canonical surjection

𝑞 : L(𝐴) ↠ M(𝐴) satisfying two axioms:

• im-cut: 𝑥 :: 𝑥𝑠 ∈ im(𝑠) ∧ 𝑦 ∈ 𝑥 :: 𝑥𝑠 → [𝑥,𝑦] ∈ im(𝑠),
• im-cons: 𝑥 :: 𝑥𝑠 ∈ im(𝑠) → 𝑥𝑠 ∈ im(𝑠).

Theorem 6.13. Let DecTotOrd(𝐴) be the set of decidable
total orders on 𝐴, Sort(𝐴) be the set of correct sorting
functions with carrier set 𝐴, and Discrete(𝐴) be a predicate
which states 𝐴 has decidable equality. There is a map
𝑜2𝑠 : DecTotOrd(𝐴) → Sort(𝐴) × Discrete(𝐴), which is an
equivalence.

Proof. 𝑜2𝑠 is constructed by parameterizing insertion sort

with ≤. By Proposition 25, 𝐴 is Discrete. The inverse 𝑠2𝑜 (𝑠)
is constructed by Definition 6.8, which produces a total order

by Propositions 18 and 21, and a decidable total order by

Discrete(𝐴). By Proposition 22 we have 𝑠2𝑜 ◦ 𝑜2𝑠 = id, and
by Lemma 7 we have 𝑜2𝑠 ◦ 𝑠2𝑜 = id, giving an isomorphism,

hence an equivalence. □

Remarks. The sorting axioms we have come up with are

abstract properties of functions. As a sanity check, we

can verify that the colloquial correctness specification of a

sorting function (starting from a total order) matches our

axioms. We consider the correctness criterion developed

in [Alexandru 2023].

Proposition 26. Assume a decidable total order ≤ on 𝐴.
A sorting algorithm is a map sort : L(𝐴) → OL(𝐴), that
turns lists into ordered lists, where OL(𝐴) is defined as∑

(𝑥𝑠 : L(𝐴)) Sorted≤ (𝑥𝑠), such that:

L(𝐴) OL(𝐴)

M(𝐴)

sort

𝑞 𝑞◦𝜋1

Sorting functions give sorting algorithms.

Proof. We construct our section 𝑠 : M(𝐴) → L(𝐴), and
define sort ≔ 𝑠 ◦ 𝑞, which produces ordered lists

by Proposition 24. □

7 Formalization
In this section, we discuss some aspects of the formalization.

The paper uses informal type theoretic language, and

is accessible without understanding any details of the

formalization. However, the formalization is done in Cubical

Agda, which has a few differences and a few shortcomings

due to proof engineering issues.

For simplicity we omitted type levels in the paper,

but our formalization has many verbose uses of universe

levels due to Agda’s universe polymorphism. Similarly,

h-levels were restricted to sets in the paper, but the

formalization is parameterized in many places for any h-

level (to facilitate future generalizations). The free algebra

framework currently only works with sets. Due to issues of

regularlity, certain computations only hold propositionally,

and the formalization requires proving auxiliary 𝛽 and 𝜂

computation rules in somce places. We also note the axioms

of sorting in the formalization are named differently from

the paper. We give a table of the Agda module names and

their corresponding sections in the paper in Table 1.

8 Discussion
We conclude by discussing some high-level observations,

related work, and future directions.

Free commutative monoids. The construction of finite

multisets and free commutative monoids has a long history,

and various authors have different approaches to it. We

refer the reader to the discussions in [Choudhury and Fiore

2023; Joram and Veltri 2023] for a detailed survey of these

constructions. Our work, in particular, was motivated by the

colloquial observation that: “there is no way to represent

free commutative monoids using inductive types”. From the

categorical point of view, this is simply the fact that the free

commutative monoid endofunctor on Set is not polynomial

(doesn’t preserve pullbacks). This has led various authors to

think about clever encodings of free commutative monoids

using inductive types by adding assumptions on the carrier

set – in particular, the assumption of total ordering on

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

CPP’25, Jan 19–25, 2025, Denver, CO, USA Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

Module Description Reference
index Index of all files N/A

Cubical.Structures.Free Free algebras § 3.2

Cubical.Structures.Sig Algebraic signatures Definition 3.1

Cubical.Structures.Str Algebraic structures Definition 3.5

Cubical.Structures.Eq Equational theories § 3.3

Cubical.Structures.Tree Trees Definition 3.11

Cubical.Structures.Set.Mon.List Lists § 4.1

Cubical.Structures.Set.Mon.Array Arrays § 4.2

Cubical.Structures.Set.CMon.QFreeMon Quotiented-free monoid § 5.1

Cubical.Structures.Set.CMon.PList Quotiented-list § 5.2

Cubical.Structures.Set.CMon.SList Swapped-list § 5.3

Cubical.Structures.Set.CMon.Bag Bag § 5.4

Cubical.Structures.Set.CMon.SList.Sort Sort functions § 6

Table 1. Status of formalised results

the carrier set leads to the construction of “fresh-lists”,

by [Kupke et al. 2023], which forces the canonical sorted
ordering on the elements of the finite multiset.

It is worth noting that in programming practice, it is

usually the case that all user-defined types have some sort

of total order enforced on them, either because they’re finite,

or they can be enumerated in some way. Therefore, under

these assumptions, the construction of fresh lists is a very

reasonable way to represent free commutative monoids, or

finite multisets.

Correctness of Sorting. Sorting is a classic problem

in computer science, and the functional programming

view of sorting and its correctness has been studied

by various authors. The simplest view of sorting is a

function sort : L(N) → L(N), which permutes the list and

outputs an ordered list, which is studied in [Appel 2023].

Fundamentally, this is a very extrinsic view of program

verification, which is common in the Coq community, and

further, a very special case of a more general sorting

algorithm.

Henglein in “What Is a Sorting Function?” [Henglein

2009], studies sorting functions abstractly, without requiring

a total order on the underlying set. He considers sorting

functions as functions on sequences (lists), and recovers

the order by “sorting” an 𝑛-element list, and looking up

the position of the elements to be compared. Unlike us,

Henglein does not factorize the sorting function through free

commutative monoids, but the ideas are extremely similar.

We are able to give a more refined axiomatization of sorting

because we consider the symmetries, or permutations,

explicitly, and work in a constructive setting (using

explicit assumptions about decidability), and this is a key

improvement over this previous work.

The other more refined intrinsic view of correct sorting

has been studied in [Hinze et al. 2012], and further

expanded in [Alexandru 2023], which matches our point

of view, as explained in Proposition 26. However, their

work is not just about extensional correctness of sorting,

but also deriving various sorting algorithms starting from

bialgebraic semantics and distributive laws. Our work is

complementary to theirs, in that we are not concerned with

the computational content of sorting, but rather the abstract

properties of sorting functions, which are independent of

a given ordering. It remains to be seen how these ideas

could be combined – the abstract property of sorting, with

the intrinsic essence of sorting algortihms – and that is

a direction for future work. This paper only talks about

sorting lists and bags, but the abstract property of correct

sorting functions could be applied to more general inductive

types. We speculate that this could lead to some interesting

connections with sorting (binary) trees, and constructions

of (binary) search trees, from classical computer science.

Universal Algebra. One of the contributions of our work
is also a rudimentary framework for universal algebra, but

done in a more categorical style, which lends itself to

an elegant formalization in type theory. We believe this

framework could be improved and generalised to higher

dimensions, moving from sets to groupoids, and using a

system of coherences on top of a system of equations, which

we are already pursuing. Groupoidyfing free (commutative)

monoids to free (symmetric) monoidal groupoids is a natural

next step, and its connections to assumptions about total

orders on the type of objects would be an important direction

to explore.

References
Garrett Birkhoff. Oct. 1935. “On the Structure of Abstract Algebras.”

Mathematical Proceedings of the Cambridge Philosophical Society, 31, 4,
(Oct. 1935), 433–454. doi: 10.1017/S0305004100013463.

Eduardo J Dubuc. May 1, 1974. “Free Monoids.” Journal of Algebra, 29, 2,
(May 1, 1974), 208–228. doi: 10.1016/0021-8693(74)90095-7.

G. M. Kelly. Aug. 1980. “A Unified Treatment of Transfinite Constructions

for Free Algebras, Free Monoids, Colimits, Associated Sheaves, and so

12

https://doi.org/10.1017/S0305004100013463
https://doi.org/10.1016/0021-8693(74)90095-7

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Symmetries in Sorting CPP’25, Jan 19–25, 2025, Denver, CO, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

On.” Bulletin of the Australian Mathematical Society, 22, 1, (Aug. 1980),
1–83. doi: 10.1017/S0004972700006353.

Andreas Blass. 1983. “Words, Free Algebras, and Coequalizers.” Fundamenta
Mathematicae, 117, 2, 117–160. doi: 10.4064/fm-117-2-117-160.

Edsger Wybe Dijkstra. Sept. 1997. A Discipline of Programming. (1st ed.).
Prentice Hall PTR, USA, (Sept. 1997). 240 pp. isbn: 978-0-13-215871-8.

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2003. “Categories

of Containers.” In: Foundations of Software Science and Computation
Structures (Lecture Notes in Computer Science). Ed. by Andrew D.

Gordon. Springer, Berlin, Heidelberg, 23–38. isbn: 978-3-540-36576-1.

doi: 10.1007/3-540-36576-1_2.
Fritz Henglein. Aug. 2009. “What Is a Sorting Function?” The Journal of

Logic and Algebraic Programming, 78, 7, (Aug. 2009), 552–572. doi: 10.1
016/j.jlap.2008.12.003.

Thorsten Altenkirch, Thomas Anberrée, and Nuo Li. 2011. “Definable

Quotients in Type Theory.” (2011). http: / /www.cs .nott .ac .uk/~pszt
xa/publ/defquotients.pdf.

Vladimir Voevodsky. 2011. “Resizing Rules - Their Use and Semantic

Justification.” TYPES (Bergen). (2011). https://www.math.ias.edu/vl
adimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf.

Nils Anders Danielsson. 2012. “Bag Equivalence via a Proof-Relevant

Membership Relation.” In: Interactive Theorem Proving (Lecture Notes in
Computer Science). Ed. by Lennart Beringer and Amy Felty. Springer,

Berlin, Heidelberg, 149–165. isbn: 978-3-642-32347-8. doi: 10.1007/97
8-3-642-32347-8_11.

Ralf Hinze, Daniel W.H. James, Thomas Harper, Nicolas Wu, and José Pedro

Magalhães. Sept. 12, 2012. “Sorting with Bialgebras and Distributive

Laws.” In: Proceedings of the 8th ACM SIGPLAN Workshop on Generic
Programming (WGP ’12). Association for Computing Machinery, New

York, NY, USA, (Sept. 12, 2012), 69–80. isbn: 978-1-4503-1576-0. doi:

10.1145/2364394.2364405.
The Univalent Foundations Program. 2013. Homotopy Type Theory:

Univalent Foundations of Mathematics. Univalent Foundations Program,

Institute for Advanced Study. https://homotopytypetheory.org/book.
Nuo Li. July 15, 2015. Quotient Types in Type Theory. (July 15, 2015).

Retrieved Apr. 29, 2022 from http://eprints.nottingham.ac.uk/28941/.
Andrea Vezzosi, AndersMörtberg, andAndreas Abel. July 26, 2019. “Cubical

Agda: A Dependently Typed Programming Language with Univalence

and Higher Inductive Types.” Proceedings of the ACM on Programming
Languages, 3, (July 26, 2019), 87:1–87:29, ICFP, (July 26, 2019). doi: 10.1
145/3341691.

[SW] Martin Mozler, Cubical Agda: Simple Application of Fin: Lehmer Codes
2021. Agda Github Community. url: https://github.%20com/agda/cu
bical/blob/a1d2bb38c0794f3cb00610cd6061cf9b5410518d/Cubical/Data
/Fin/LehmerCode.agda.

Vikraman Choudhury, Jacek Karwowski, and Amr Sabry. Jan. 11,

2022. “Symmetries in Reversible Programming: From Symmetric Rig

Groupoids to Reversible Programming Languages.” Proceedings of the
ACM on Programming Languages, 6, (Jan. 11, 2022), 6:1–6:32, POPL,
(Jan. 11, 2022). doi: 10.1145/3498667.

G. C. (Cass) Alexandru. 2023. “Intrinsically Correct Sorting Using

Bialgebraic Semantics.” Master’s thesis. Radboud University. https://ww
w.ru.nl/icis/education/master-thesis/vm/theses-archive/.

Andrew W. Appel. Aug. 23, 2023. Verified Functional Algorithms. Software
Foundations. Vol. 3. (Aug. 23, 2023). https://softwarefoundations.cis.up
enn.edu/vfa-current/index.html.

Vikraman Choudhury and Marcelo Fiore. Feb. 22, 2023. “Free Commutative

Monoids in Homotopy Type Theory.” Electronic Notes in Theoretical
Informatics and Computer Science, Volume 1 - Proceedings of... (Feb. 22,

2023), 10492. doi: 10.46298/entics.10492.
Philipp Joram and Niccolò Veltri. 2023. “Constructive Final Semantics

of Finite Bags.” In: DROPS-IDN/v2/Document/10.4230/LIPIcs.ITP.2023.20.
14th International Conference on Interactive Theorem Proving (ITP

2023). Schloss-Dagstuhl - Leibniz Zentrum für Informatik. doi: 10 .4
230/LIPIcs.ITP.2023.20.

Clemens Kupke, Fredrik Nordvall Forsberg, and Sean Watters. 2023. “A

Fresh Look at Commutativity: Free Algebraic Structures via Fresh Lists.”

In: Programming Languages and Systems (Lecture Notes in Computer

Science). Ed. by Chung-Kil Hur. Springer Nature, Singapore, 135–154.

isbn: 978-981-9983-11-7. doi: 10.1007/978-981-99-8311-7_7.

13

https://doi.org/10.1017/S0004972700006353
https://doi.org/10.4064/fm-117-2-117-160
https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1016/j.jlap.2008.12.003
https://doi.org/10.1016/j.jlap.2008.12.003
http://www.cs.nott.ac.uk/~psztxa/publ/defquotients.pdf
http://www.cs.nott.ac.uk/~psztxa/publ/defquotients.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf
https://doi.org/10.1007/978-3-642-32347-8_11
https://doi.org/10.1007/978-3-642-32347-8_11
https://doi.org/10.1145/2364394.2364405
https://homotopytypetheory.org/book
http://eprints.nottingham.ac.uk/28941/
https://doi.org/10.1145/3341691
https://doi.org/10.1145/3341691
https://github.%20com/agda/cubical/blob/a1d2bb38c0794f3cb00610cd6061cf9b5410518d/Cubical/Data/Fin/LehmerCode.agda
https://github.%20com/agda/cubical/blob/a1d2bb38c0794f3cb00610cd6061cf9b5410518d/Cubical/Data/Fin/LehmerCode.agda
https://github.%20com/agda/cubical/blob/a1d2bb38c0794f3cb00610cd6061cf9b5410518d/Cubical/Data/Fin/LehmerCode.agda
https://doi.org/10.1145/3498667
https://www.ru.nl/icis/education/master-thesis/vm/theses-archive/
https://www.ru.nl/icis/education/master-thesis/vm/theses-archive/
https://softwarefoundations.cis.upenn.edu/vfa-current/index.html
https://softwarefoundations.cis.upenn.edu/vfa-current/index.html
https://doi.org/10.46298/entics.10492
https://doi.org/10.4230/LIPIcs.ITP.2023.20
https://doi.org/10.4230/LIPIcs.ITP.2023.20
https://doi.org/10.1007/978-981-99-8311-7_7

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

CPP’25, Jan 19–25, 2025, Denver, CO, USA Anon.

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

A Supplementary material for Section 2 (Notation)
A.1 Function extensionality
Within the scope of our work, funExt is heavily used in § 4.2 and § 5.4, where a 𝑛-element array 𝐴𝑛

is defined as lookup

functions Finn → 𝐴. Therefore, to prove two arrays are equal, we need to show that two functions would be equal, which is

impossible to do without funExt.

A.2 Higher Inductive Types
In our work, higher inductive types and set quotients are used extensively to define commutative data structures, which we

would demonstrate in § 5.

A.3 Univalence
Within the scope of our work, we want to primarily work with sets, therefore we add the truncation constructor whenever

necessary sowe need not concern ourselveswith higher-dimensional paths (or equalities). Sincewe havemultiple constructions

of free monoids and free commutative monoids, given in § 4 and § 5, having univalence allows us to easily transport proofs

and functions from one construction to another. Another instance where univalence is used is the definition of membership

proofs in ??, where we want to show to propositions are commutative: i.e. ∀𝑝, 𝑞 : hProp, 𝑝 ∨𝑞 = 𝑞 ∨ 𝑝 . Since 𝑝 and 𝑞 are types,

we need univalence to show 𝑝 ∨ 𝑞 = 𝑞 ∨ 𝑝 are in fact equal.

B Supplementary material for Section 3 (Universal Algebra)
Proposition 1. Suppose𝔉(𝑋) and𝔊(𝑋) are both free 𝜎-algebras on 𝑋 . Then𝔉(𝑋) ≃𝔊(𝑋), natural in 𝑋 .

Proof. By extending 𝜂𝑋 for each free construction, we have maps in each direction: 𝐺 ·𝜂𝑋 ♯
: 𝔉(𝑋) →𝔊(𝑋), and vice versa.

Finally, using Definition 3.10, we have 𝐹 ·𝜂𝑋 ♯ ◦ 𝐺 ·𝜂𝑋 ♯ ∼ (𝐹 ·𝜂𝑋 ♯ ◦ 𝐺 ·𝜂𝑋)
♯ ∼ 𝐹 ·𝜂𝑋 ♯ ∼ id𝔉 (𝑋) . □

The free algebra construction automatically turns 𝐹 into an endofunctor on Set, where the action on functions is given

by: 𝑋
𝑓
−→ 𝑌 ↦→ 𝐹 (𝑋)

(𝜂𝑌 ◦𝑓)♯−−−−−−→ 𝐹 (𝑌). Further, this gives a monad on Set, with unit given by 𝜂, and multiplication given by

𝜇𝑋 ≔ 𝐹 (𝐹 (𝑋))
id𝐹 (𝑋)

♯

−−−−−→ 𝐹 (𝑋).
The free algebra on the empty set𝔉(0) is inhabited by all the constant symbols in the signature. We note a few important

properties of free algebras on 0, 1, and coproducts.

Proposition 27.
• 𝜎-Alg(𝔉(0),𝔛) is contractible,
• if 𝜎 has one constant symbol, then𝔉(0) is contractible,
• the type of algebra structures on 1 is contractible,
• 𝔉(𝑋 + 𝑌) is the coproduct of𝔉(𝑋) and𝔉(𝑌) in 𝜎-Alg:

𝜎-Alg(𝔉(𝑋 + 𝑌),ℨ) ≃ 𝜎-Alg(𝔉(𝑋),ℨ) × 𝜎-Alg(𝔉(𝑌),ℨ) .

Proof. 𝐹 being a left adjoint, preserves coproducts. This makes 𝔉(0) initial in 𝜎-Alg. 𝔉(1) → 1 is contractible because 1 is

terminal in Set. □

C Supplementary material for Section 4 (Constructions of Free Monoids)
Definition C.1 (Concatenation). We define the concatenation operation ++ : List(𝐴) → List(𝐴) → List(𝐴), by recursion on

the first argument:

[] ++ 𝑦𝑠 = 𝑦𝑠

(𝑥 :: 𝑥𝑠) ++ 𝑦𝑠 = 𝑥 :: (𝑥𝑠 ++ 𝑦𝑠)

The proof that ++ satisfies monoid laws is straightforward (see the formalization for details).

Definition C.2 (Universal extension). For any monoid𝔛, and given a map 𝑓 : 𝐴 → 𝑋 , we define the extension 𝑓 ♯ : List(𝐴) →
𝔛 by recursion on the list:

𝑓 ♯ ([]) = 𝑒

𝑓 ♯ (𝑥 :: 𝑥𝑠) = 𝑓 (𝑥) • 𝑓 ♯ (𝑥𝑠)
14

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

Symmetries in Sorting CPP’25, Jan 19–25, 2025, Denver, CO, USA

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

Proposition 3. (−)♯ lifts a function 𝑓 : 𝐴 → 𝑋 to a monoid homomorphism 𝑓 ♯ : List(𝐴) → 𝔛.

Proof. To show that 𝑓 ♯ is a monoid homomorphism, we need to show 𝑓 ♯ (𝑥𝑠++𝑦𝑠) = 𝑓 ♯ (𝑥𝑠) • 𝑓 ♯ (𝑦𝑠). We can do so by induction

on 𝑥𝑠 .

Case []: 𝑓 ♯ ([] ++ 𝑦𝑠) = 𝑓 ♯ (𝑦𝑠), and 𝑓 ♯ ([]) • 𝑓 ♯ (𝑦𝑠) = 𝑒 • 𝑓 ♯ (𝑦𝑠) = 𝑓 ♯ (𝑦𝑠) by definition of (−)♯. Therefore, we have

𝑓 ♯ ([] ++ 𝑦𝑠) = 𝑓 ♯ ([]) • 𝑓 ♯ (𝑦𝑠).
Case 𝑥 :: 𝑥𝑠 :

𝑓 ♯ ((𝑥 :: 𝑥𝑠) ++ 𝑦𝑠)

= 𝑓 ♯ (([𝑥] ++ 𝑥𝑠) ++ 𝑦𝑠) by definition of concatenation

= 𝑓 ♯ ([𝑥] ++ (𝑥𝑠 ++ 𝑦𝑠)) by associativity

= 𝑓 ♯ (𝑥 :: (𝑥𝑠 ++ 𝑦𝑠)) by definition of concatenation

= 𝑓 (𝑥) • 𝑓 ♯ (𝑥𝑠 ++ 𝑦𝑠) by definition of (−)♯

= 𝑓 (𝑥) • (𝑓 ♯ (𝑥𝑠) • 𝑓 ♯ (𝑦𝑠)) by induction

= (𝑓 (𝑥) • 𝑓 ♯ (𝑥𝑠)) • 𝑓 ♯ (𝑦𝑠) by associativity

= 𝑓 ♯ (𝑥 :: 𝑥𝑠) • 𝑓 ♯ (𝑦𝑠) by definition of (−)♯

Therefore, (−)♯ does correctly lift a function to a monoid homomorphism. □

Proposition 4 (Universal property for List). (List(𝐴), 𝜂𝐴) is the free monoid on 𝐴.

Proof. To show that (−)♯ is an inverse to − ◦ 𝜂𝐴, we first show (−)♯ is the right inverse to − ◦ 𝜂𝐴. For all 𝑓 and 𝑥 , (𝑓 ♯ ◦𝜂𝐴) (𝑥) =
𝑓 ♯ (𝑥 :: []) = 𝑓 (𝑥) • 𝑒 = 𝑓 (𝑥), therefore by function extensionality, for any 𝑓 , 𝑓 ♯ ◦ 𝜂𝐴 = 𝑓 , and (− ◦ 𝜂𝐴) ◦ (−)♯ = 𝑖𝑑 .

To show (−)♯ is the left inverse to − ◦ 𝜂𝐴, we need to prove for anymonoid homomorphism 𝑓 : List(𝐴) → 𝔛, (𝑓 ◦ 𝜂𝐴)♯ (𝑥𝑠) =
𝑓 (𝑥𝑠). We can do so by induction on 𝑥𝑠 .

Case []: (𝑓 ◦ 𝜂𝐴)♯ ([]) = 𝑒 by definition of the (−)♯ operation, and 𝑓 ([]) = 𝑒 by homomorphism properties of 𝑓 . Therefore,

(𝑓 ◦ 𝜂𝐴)♯ ([]) = 𝑓 ([]).
Case 𝑥 :: 𝑥𝑠 :

(𝑓 ◦ 𝜂𝐴)♯ (𝑥 :: 𝑥𝑠)

= (𝑓 ◦ 𝜂𝐴) (𝑥) • (𝑓 ◦ 𝜂𝐴)♯ (𝑥𝑠) by definition of (−)♯

= (𝑓 ◦ 𝜂𝐴) (𝑥) • 𝑓 (𝑥𝑠) by induction

= 𝑓 ([𝑥]) • 𝑓 (𝑥𝑠) by definition of 𝜂𝐴

= 𝑓 ([𝑥] ++ 𝑥𝑠) by homomorphism properties of 𝑓

= 𝑓 (𝑥 :: 𝑥𝑠) by definition of concatenation

By function extensionality, (−)♯ ◦ (− ◦ 𝜂𝐴) = 𝑖𝑑 . Therefore, (−)♯ and (−) ◦ [_] are inverse of each other.

We have now shown that (−) ◦ 𝜂𝐴 is an equivalence from monoid homomorphisms List(𝐴) → 𝔛 to set functions 𝐴 → 𝑋 ,

and its inverse is given by (−)♯, which maps set functions 𝐴 → 𝑋 to monoid homomorphisms List(𝐴) → 𝔛. Therefore, List is
indeed the free monoid. □

Lemma 1. Zero-length arrays (0, 𝑓) are contractible.

Proof. We need to show 𝑓 : Fin0 → 𝐴 is equal to 𝜆{}. By function extensionality this amounts to showing for all 𝑥 : 0,
𝑓 (𝑥) = (𝜆{})(𝑥), which holds by absurdity elimination on 𝑥 . Therefore, any array (0, 𝑓) is equal to (0, 𝜆{}). □

Proposition 5. (Array(𝐴),++) is a monoid.
15

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

CPP’25, Jan 19–25, 2025, Denver, CO, USA Anon.

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

Proof. To show Array satisfies left unit, we want to show (0, 𝜆{}) ++ (𝑛, 𝑓) = (𝑛, 𝑓).

(0, 𝜆{}) ++ (𝑛, 𝑓) = (0 + 𝑛, 𝜆{} ⊕ 𝑓)

(𝜆{} ⊕ 𝑓) (𝑘) =
{
(𝜆{})(𝑘) if 𝑘 < 0

𝑓 (𝑘 − 0) otherwise

It is trivial to see the length matches: 0 + 𝑛 = 𝑛. We also need to show 𝜆{} ⊕ 𝑓 = 𝑓 . Since 𝑛 < 0 for any 𝑛 : N is impossible,

(𝜆{} ⊕ 𝑓) (𝑘) would always reduce to 𝑓 (𝑘 − 0) = 𝑓 (𝑘), therefore (0, 𝜆{}) ++ (𝑛, 𝑓) = (𝑛, 𝑓).
To show Array satisfies right unit, we want to show (𝑛, 𝑓) ++ (0, 𝜆{}) = (𝑛, 𝑓).

(𝑛, 𝑓) ++ (0, 𝜆{}) = (𝑛 + 0, 𝑓 ⊕ 𝜆{})

(𝑓 ⊕ 𝜆{})(𝑘) =
{
𝑓 (𝑘) if 𝑘 < 𝑛

(𝜆{})(𝑘 − 0) otherwise

It is trivial to see the length matches: 𝑛 + 0 = 𝑛. We also need to show 𝑓 ⊕ 𝜆{} = 𝑓 . We note that the type of 𝑓 ⊕ 𝜆{} is
Finn+0 → 𝐴, therefore 𝑘 is of the type Finn+0. Since Finn+0 � Finn, it must always hold that 𝑘 < 𝑛, therefore (𝑓 ⊕ 𝜆{})(𝑘) must

always reduce to 𝑓 (𝑘). Thus, (𝑛, 𝑓) ++ (0, 𝜆{}) = (𝑛, 𝑓).
For associativity, we want to show for any array (𝑛, 𝑓), (𝑚,𝑔), (𝑜, ℎ), ((𝑛, 𝑓) ++ (𝑚,𝑔)) ++ (𝑜, ℎ) = (𝑛, 𝑓) ++ ((𝑚,𝑔) ++ (𝑜, ℎ)).

((𝑛, 𝑓) ++ (𝑚,𝑔)) ++ (𝑜, ℎ) = ((𝑛 +𝑚) + 𝑜, (𝑓 ⊕ 𝑔) ⊕ ℎ)

((𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘) =

{
𝑓 (𝑘) if 𝑘 < 𝑛

𝑔(𝑘 − 𝑛) otherwise

if 𝑘 < 𝑛 +𝑚

ℎ(𝑘 − (𝑛 +𝑚)) otherwise

(𝑛, 𝑓) ++ ((𝑚,𝑔) ++ (𝑜, ℎ)) = (𝑛 + (𝑚 + 𝑜), 𝑓 ⊕ (𝑔 ⊕ ℎ))

(𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) =

𝑓 (𝑘) k < n{
𝑔(𝑘 − 𝑛) k - n < m

ℎ(𝑘 − 𝑛 −𝑚) otherwise

otherwise

We first case split on 𝑘 < 𝑛 +𝑚 then 𝑘 < 𝑛.

Case 𝑘 < 𝑛 +𝑚, 𝑘 < 𝑛: Both (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) and ((𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘) reduce to 𝑓 (𝑘).
Case 𝑘 < 𝑛 +𝑚, 𝑘 ≥ 𝑛: ((𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘) reduce to 𝑔(𝑘 − 𝑛) by definition. To show (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) would also reduce to

𝑔(𝑘 − 𝑛), we first need to show ¬(𝑘 < 𝑛), which follows from 𝑘 ≥ 𝑛. We then need to show 𝑘 − 𝑛 < 𝑚. This can be done by

simply subtracting 𝑛 from both side on 𝑘 < 𝑛 +𝑚, which is well defined since 𝑘 ≥ 𝑛.

Case 𝑘 ≥ 𝑛 +𝑚: ((𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘) reduce to ℎ(𝑘 − (𝑛 +𝑚)) by definition. To show (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) would also reduce to

ℎ(𝑘 − (𝑛 +𝑚)), we first need to show ¬(𝑘 < 𝑛), which follows from 𝑘 ≥ 𝑛 +𝑚. We then need to show ¬(𝑘 − 𝑛 < 𝑚), which
also follows from 𝑘 ≥ 𝑛 +𝑚. We now have (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) = ℎ(𝑘 −𝑛 −𝑚). Since 𝑘 ≥ 𝑛 +𝑚, ℎ(𝑘 −𝑛 −𝑚) is well defined and
is equal to ℎ(𝑘 − (𝑛 +𝑚)), therefore (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) = (𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘) = ℎ(𝑘 − (𝑛 +𝑚)).

In all cases (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) = ((𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘), therefore associativity holds. □

Lemma 2 (Array cons). Any array (𝑆 (𝑛), 𝑓) is equal to 𝜂𝐴 (𝑓 (0)) ++ (𝑛, 𝑓 ◦ 𝑆).

Proof. We want to show 𝜂𝐴 (𝑓 (0)) ++ (𝑛, 𝑓 ◦ 𝑆) = (𝑆 (𝑛), 𝑓).

(1, 𝜆{0 ↦→ 𝑓 (0)}) ++ (𝑛, 𝑓 ◦ 𝑆) = (1 + 𝑛, 𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆))

(𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) (𝑘) =
{
𝑓 (0) if 𝑘 < 1

(𝑓 ◦ 𝑆) (𝑘 − 1) otherwise

It is trivial to see the length matches: 1 + 𝑛 = 𝑆 (𝑛). We need to show (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) = 𝑓 . We prove by

case splitting on 𝑘 < 1. On 𝑘 < 1, (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) (𝑘) reduces to 𝑓 (0). Since, the only possible for 𝑘 when

𝑘 < 1 is 0, (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) (𝑘) = 𝑓 (𝑘) when 𝑘 < 1. On 𝑘 ≥ 1, (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) (𝑘) reduces to

(𝑓 ◦ 𝑆) (𝑘 − 1) = 𝑓 (𝑆 (𝑘 − 1)). Since 𝑘 ≥ 1, 𝑆 (𝑘 − 1) = 𝑘 , therefore (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) (𝑘) = 𝑓 (𝑘) when 𝑘 ≥ 1. Thus, in

both cases, (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) = 𝑓 . □
16

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

Symmetries in Sorting CPP’25, Jan 19–25, 2025, Denver, CO, USA

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

Lemma 3 (Array split). For any array (𝑆 (𝑛), 𝑓) and (𝑚,𝑔),
(𝑛 +𝑚, (𝑓 ⊕ 𝑔) ◦ 𝑆) = (𝑛, 𝑓 ◦ 𝑆) ++ (𝑚,𝑔) .

Proof. It is trivial to see both array have length 𝑛 +𝑚. We want to show (𝑓 ⊕ 𝑔) ◦ 𝑆 = (𝑓 ◦ 𝑆) ⊕ 𝑔.

((𝑓 ⊕ 𝑔) ◦ 𝑆) (𝑘) =
{
𝑓 (𝑆 (𝑘)) if 𝑆 (𝑘) < 𝑆 (𝑛)
𝑔(𝑆 (𝑘) − 𝑆 (𝑛)) otherwise

((𝑓 ◦ 𝑆) ⊕ 𝑔) (𝑘) =
{
(𝑓 ◦ 𝑆) (𝑘) if 𝑘 < 𝑛

𝑔(𝑘 − 𝑛) otherwise

We prove by case splitting on 𝑘 < 𝑛. On 𝑘 < 𝑛, ((𝑓 ⊕ 𝑔) ◦ 𝑆) (𝑘) reduces to 𝑓 (𝑆 (𝑘)) since 𝑘 < 𝑛 implies 𝑆 (𝑘) < 𝑆 (𝑛),
and ((𝑓 ◦ 𝑆) ⊕ 𝑔) (𝑘) reduces to (𝑓 ◦ 𝑆) (𝑘) by definition, therefore they are equal. On 𝑘 ≥ 𝑛, ((𝑓 ⊕ 𝑔) ◦ 𝑆) (𝑘) reduces to
𝑔(𝑆 (𝑘) − 𝑆 (𝑛)) = 𝑔(𝑘 − 𝑛), and ((𝑓 ◦ 𝑆) ⊕ 𝑔) (𝑘) reduces to 𝑔(𝑘 − 𝑛) by definition, therefore they are equal. □

Proposition 6. (−)♯ lifts a function 𝑓 : 𝐴 → 𝑋 to a monoid homomorphism 𝑓 ♯ : Array(𝐴) → 𝔛.

Proof. To show that 𝑓 ♯ is a monoid homomorphism, we need to show 𝑓 ♯ (𝑥𝑠++𝑦𝑠) = 𝑓 ♯ (𝑥𝑠) • 𝑓 ♯ (𝑦𝑠). We can do so by induction

on 𝑥𝑠 .

Case (0, 𝑔): We have𝑔 = 𝜆{} by Lemma 1. 𝑓 ♯ ((0, 𝜆{})++𝑦𝑠) = 𝑓 ♯ (𝑦𝑠) by left unit, and 𝑓 ♯ (0, 𝜆{})•𝑓 ♯ (𝑦𝑠) = 𝑒•𝑓 ♯ (𝑦𝑠) = 𝑓 ♯ (𝑦𝑠)
by definition of (−)♯. Therefore, 𝑓 ♯ ((0, 𝜆{}) ++ 𝑦𝑠) = 𝑓 ♯ (0, 𝜆{}) • 𝑓 ♯ (𝑦𝑠).
Case (𝑆 (𝑛), 𝑔): Let 𝑦𝑠 be (𝑚,ℎ).

𝑓 ♯ ((𝑆 (𝑛), 𝑔) ++ (𝑚,ℎ))

= 𝑓 ♯ (𝑆 (𝑛 +𝑚), 𝑔 ⊕ ℎ) by definition of concatenation

= 𝑓 ((𝑔 ⊕ ℎ) (0)) • 𝑓 ♯ (𝑛 +𝑚, (𝑔 ⊕ ℎ) ◦ 𝑆) by definition of (−)♯

= 𝑓 (𝑔(0)) • 𝑓 ♯ (𝑛 +𝑚, (𝑔 ⊕ ℎ) ◦ 𝑆) by definition of ⊕, and 0 < 𝑆 (𝑛)

= 𝑓 (𝑔(0)) • 𝑓 ♯ ((𝑛,𝑔 ◦ 𝑆) ++ (𝑚,ℎ)) by Lemma 3

= 𝑓 (𝑔(0)) • (𝑓 ♯ (𝑛,𝑔 ◦ 𝑆) • 𝑓 ♯ (𝑚,ℎ))) by induction

= (𝑓 (𝑔(0)) • 𝑓 ♯ (𝑛,𝑔 ◦ 𝑆)) • 𝑓 ♯ (𝑚,ℎ)) by associativity

= 𝑓 ♯ (𝑆 (𝑛), 𝑔) • 𝑓 ♯ (𝑚,ℎ)) by definition of (−)♯

Therefore, (−)♯ does correctly lift a function to a monoid homomorphism. □

Proposition 7 (Universal property for Array). (Array(𝐴), 𝜂𝐴) is the free monoid on 𝐴.

Proof. To show that (−)♯ is an inverse to − ◦ 𝜂𝐴, we first show (−)♯ is the right inverse to − ◦ 𝜂𝐴. For all 𝑓 and 𝑥 , (𝑓 ♯ ◦𝜂𝐴) (𝑥) =
𝑓 ♯ (1, 𝜆{0 ↦→ 𝑥}) = 𝑓 (𝑥) • 𝑒 = 𝑓 (𝑥), therefore by function extensionality, for any 𝑓 , 𝑓 ♯ ◦ 𝜂𝐴 = 𝑓 , and (− ◦ 𝜂𝐴) ◦ (−)♯ = 𝑖𝑑 .

To show (−)♯ is the left inverse to − ◦ 𝜂𝐴, we need to prove for any monoid homomorphism 𝑓 : Array(𝐴) → 𝔛,

(𝑓 ◦ 𝜂𝐴)♯ (𝑥𝑠) = 𝑓 (𝑥𝑠). We can do so by induction on 𝑥𝑠 .

Case (0, 𝑔): By Lemma 1 we have 𝑔 = 𝜆{}. (𝑓 ◦ 𝜂𝐴)♯ (0, 𝜆{}) = 𝑒 by definition of the (−)♯ operation, and 𝑓 (0, 𝜆{}) = 𝑒 by

homomorphism properties of 𝑓 . Therefore, (𝑓 ◦ 𝜂𝐴)♯ (0, 𝑔) = 𝑓 (0, 𝑔).
Case (𝑆 (𝑛), 𝑔), we prove it in reverse:

𝑓 (𝑆 (𝑛), 𝑔)
= 𝑓 (𝜂𝐴 (𝑔(0)) ++ (𝑛,𝑔 ◦ 𝑆)) by Lemma 2

= 𝑓 (𝜂𝐴 (𝑔(0))) • 𝑓 (𝑛,𝑔 ◦ 𝑆) by homomorphism properties of 𝑓

= (𝑓 ◦ 𝜂𝐴) (𝑔(0)) • (𝑓 ◦ 𝜂𝐴)♯ (𝑛,𝑔 ◦ 𝑆) by induction

= (𝑓 ◦ 𝜂𝐴)♯ (𝑆 (𝑛), 𝑔) by definition of (−)♯

By function extensionality, (−)♯ ◦ (− ◦ 𝜂𝐴) = 𝑖𝑑 . Therefore, (−)♯ and (−) ◦ [_] are inverse of each other.

17

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

CPP’25, Jan 19–25, 2025, Denver, CO, USA Anon.

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

We have now shown that (−) ◦ 𝜂𝐴 is an equivalence from monoid homomorphisms Array(𝐴) → 𝔛 to set functions 𝐴 → 𝑋 ,

and its inverse is given by (−)♯, which maps set functions 𝐴 → 𝑋 to monoid homomorphisms Array(𝐴) → 𝔛. Therefore,

Array is indeed the free monoid. □

D Supplementary material for Section 5 (Constructions of Free Comm. Monoids)
Proposition 8. (𝔉(𝐴)�≈, •, 𝑞(𝑒)) is a commutative monoid.

Proof. Since≈ is a congruence wrt •, we can lift • : 𝐹 (𝐴) → 𝐹 (𝐴) → 𝐹 (𝐴) to the quotient to obtain++ : 𝐹 (𝐴)�≈ → 𝐹 (𝐴)�≈ →
𝐹 (𝐴)�≈. ++ also satisfies the unit and associativity laws that • satisfy. Commutativity of ++ follows from the commutativity

requirement of ≈, therefore (𝐹 (𝐴)�≈,++, 𝑞(𝑖)) forms a commutative monoid. □

Proposition 9 (Universal property for𝔉(𝐴)�≈). (𝔉(𝐴)�≈, 𝜂𝐴 : 𝐴
𝜂𝐴−−→ 𝔉(𝐴)

𝑞
−→ 𝔉(𝐴)�≈) is the free comm. monoid on 𝐴.

Proof. To show that (−)♯ is an inverse to (−) ◦ 𝜂𝐴, we first show (−)♯ is the right inverse to (−) ◦ 𝜂𝐴. For all 𝑓 and 𝑥 ,

(𝑓 ♯ ◦ 𝜂𝐴) (𝑥) = (𝑓 ♯ ◦ 𝑞) (𝜇𝐴 (𝑥)) = 𝑓 (𝜇𝐴 (𝑥)). By universal property of 𝐹 , 𝑓 (𝜇𝐴 (𝑥)) = 𝑓 (𝑥), therefore (𝑓 ♯ ◦ 𝜂𝐴) (𝑥) = 𝑓 (𝑥). By
function extensionality, for any 𝑓 , 𝑓 ♯ ◦ 𝜂𝐴 = 𝑓 , and (− ◦ 𝜂𝐴) ◦ (−)♯ = 𝑖𝑑 .

To show (−)♯ is the left inverse to (−) ◦ 𝜂𝐴, we need to prove for any commutative monoid homomorphism 𝑓 : 𝔉(𝐴)≈ → 𝔛

and 𝑥 : 𝔉(𝐴)≈, (𝑓 ◦ 𝜂𝐴)♯ (𝑥) = 𝑓 (𝑥). To prove this it is suffice to show for all 𝑥 : 𝔉(𝐴), (𝑓 ◦ 𝜂𝐴)♯ (𝑞(𝑥)) = 𝑓 (𝑞(𝑥)).
(𝑓 ◦ 𝜂𝐴)♯ (𝑞(𝑥)) reduces to �(𝑓 ◦ 𝑞 ◦ 𝜇𝐴) (𝑥). Note that both 𝑓 and 𝑞 are homomorphism, therefore 𝑓 ◦ 𝑞 is a homomorphism.

By universal property of 𝐹 we get
�(𝑓 ◦ 𝑞 ◦ 𝜇𝐴) (𝑥) = (𝑓 ◦ 𝑞) (𝑥), therefore (𝑓 ◦ 𝜂𝐴)♯ (𝑞(𝑥)) = 𝑓 (𝑞(𝑥)).

We have now shown that (−) ◦ 𝜂𝐴 is an equivalence from commutative monoid homomorphisms 𝔉(𝐴)�≈ → 𝔛 to set

functions𝐴 → 𝑋 , and its inverse is given by (−)♯, which maps set functions𝐴 → 𝑋 to commutative monoid homomorphisms

𝔉(𝐴)�≈ → 𝔛. Therefore,𝔉(𝐴)�≈ is indeed the free commutative monoid on 𝐴. □

Proposition 10. Let 𝔛 be a commutative monoid, and 𝑓 : 𝐴 → 𝑋 . For 𝑥,𝑦 : 𝐴 and 𝑥𝑠,𝑦𝑠 : PList(𝐴), 𝑓 ♯ (𝑥𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠) =
𝑓 ♯ (𝑥𝑠 ++ 𝑦 :: 𝑥 :: 𝑦𝑠). Hence, Perm respects (−)♯.

Proof. We can prove this by induction on 𝑥𝑠 . For 𝑥𝑠 = [], by homomorphism properties of 𝑓 ♯, we can prove 𝑓 ♯ (𝑥 :: 𝑦 :: 𝑦𝑠) =
𝑓 ♯ ([𝑥]) • 𝑓 ♯ ([𝑦]) • 𝑓 ♯ (𝑦𝑠). Since the image of 𝑓 ♯ is a commutative monoid, we have 𝑓 ♯ ([𝑥]) • 𝑓 ♯ ([𝑦]) = 𝑓 ♯ ([𝑦]) • 𝑓 ♯ ([𝑥]),
therefore proving 𝑓 ♯ (𝑥 :: 𝑦 :: 𝑦𝑠) = 𝑓 ♯ (𝑦 :: 𝑥 :: 𝑦𝑠). For 𝑥𝑠 = 𝑧 :: 𝑧𝑠 , we can prove 𝑓 ♯ ((𝑧 :: 𝑧𝑠) ++ 𝑥 :: 𝑦 :: 𝑦𝑠) = 𝑓 ♯ ([𝑧]) •
𝑓 ♯ (𝑧𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠). We can then complete the proof by induction to obtain 𝑓 ♯ (𝑧𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠) = 𝑓 ♯ (𝑧𝑠 ++ 𝑦 :: 𝑥 :: 𝑦𝑠)
and reassembling back to 𝑓 ♯ ((𝑧 :: 𝑧𝑠) ++ 𝑦 :: 𝑥 :: 𝑦𝑠) by homomorphism properties of 𝑓 ♯. □

Also, whenever we define a function on PList by pattern matching we would also need to show the function respects

Perm, i.e. Perm𝑎𝑠 𝑏𝑠 → 𝑓 (𝑎𝑠) = 𝑓 (𝑏𝑠). This can be annoying because of the many auxiliary variables in the constructor

perm-swap, namely 𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 . We need to show 𝑓 would respect a swap in the list anywhere between 𝑥𝑠 and 𝑦𝑠 , which

can unnecessarily complicate the proof. For example in the inductive step of Proposition 10, 𝑓 ♯ ((𝑧 :: 𝑧𝑠) ++ 𝑥 :: 𝑦 :: 𝑦𝑠) =
𝑓 ♯ ([𝑧]) • 𝑓 ♯ (𝑧𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠), to actually prove this in Cubical Agda would involve first applying associativity to prove

(𝑧 :: 𝑧𝑠) ++ 𝑥 :: 𝑦 :: 𝑦𝑠 = 𝑧 :: (𝑧𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠), before we can actually apply homomorphism properties of 𝑓 . In the final

reassembling step, similarly, we also need to re-apply associativity to go from 𝑧 :: (𝑧𝑠 ++ 𝑦 :: 𝑥 :: 𝑦𝑠) to (𝑧 :: 𝑧𝑠) ++ 𝑦 :: 𝑥 :: 𝑦𝑠 .

Also since we are working with an equivalence relation we defined (Perm) and not the equality type directly, we cannot

exploit the many combinators defined in the standard library for the equality type and often needing to re-define combinators

ourselves. The trunc constructor is necessary to truncate SList down to a set, thereby ignoring any higher paths introduced

by the swap constructor. This is opposed to List, which does not need a trunc constructor because it does not have any path

constructors, therefore it can be proven that List(𝐴) is a set assuming 𝐴 is a set (see formalization).

Definition D.1 (Concatenation). We define the concatenation operation ++ : SList(𝐴) → SList(𝐴) → SList(𝐴) recursively,
where we also have to consider the (functorial) action on the swap path using ap.

[] ++ 𝑦𝑠 = 𝑦𝑠

(𝑥 :: 𝑥𝑠) ++ 𝑦𝑠 = 𝑥 :: (𝑥𝑠 ++ 𝑦𝑠)
ap++𝑦𝑠 (swap(𝑥,𝑦, 𝑥𝑠)) = swap(𝑥,𝑦,𝑦𝑠 ++ 𝑥𝑠)

[Choudhury and Fiore 2023] have already given a proof of (SList(𝐴),++, []) satisfying commutative monoid laws. We explain

the proof of ++ satisfying commutativity here.

Lemma 8 (Head rearrange). For all 𝑥 : 𝐴, 𝑥𝑠 : SList(𝐴), 𝑥 :: 𝑥𝑠 = 𝑥𝑠 ++ [𝑥].
18

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

Symmetries in Sorting CPP’25, Jan 19–25, 2025, Denver, CO, USA

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

Proof. We can prove this by induction on 𝑥𝑠 . For 𝑥𝑠 ≡ [] this is trivial. For 𝑥𝑠 ≡ 𝑦 :: 𝑦𝑠 , we have the induction hypothesis

𝑥 :: 𝑦𝑠 = 𝑦𝑠 ++ [𝑥]. By applying 𝑦 :: (−) on both side and then apply swap, we can complete the proof. □

Theorem D.2 (Commutativity). For all 𝑥𝑠, 𝑦𝑠 : SList(𝐴), 𝑥𝑠 ++ 𝑦𝑠 = 𝑦𝑠 ++ 𝑥𝑠 .

Proof. By induction on 𝑥𝑠 we can iteratively apply Lemma 8 to move all elements of 𝑥𝑠 to after 𝑦𝑠 . This would move 𝑦𝑠 to the

head and 𝑥𝑠 to the end, thereby proving 𝑥𝑠 ++ 𝑦𝑠 = 𝑦𝑠 ++ 𝑥𝑠 . □

Unlike PList which is defined as a set quotient, this is defined as a HIT, therefore handling equalities between SList is much

simpler than PList. We would still need to prove a function 𝑓 respects the path constructor of SList when pattern matching,

i.e. 𝑓 (𝑥 :: 𝑦 :: 𝑥𝑠) = 𝑓 (𝑦 :: 𝑥 :: 𝑥𝑠). Unlike PList we do not need to worry about as many auxiliary variables since swap only

happens at the head of the list, whereas with PList we would need to prove 𝑓 (𝑥𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠) = 𝑓 (𝑥𝑠 ++ 𝑦 :: 𝑥 :: 𝑦𝑠).
One may be tempted to just remove 𝑥𝑠 from the perm-swap constructor such that it becomes perm-swap : ∀𝑥 𝑦 𝑦𝑠 𝑧𝑠 →
Perm (𝑥 :: 𝑦 :: 𝑦𝑠) 𝑧𝑠 → Perm (𝑦 :: 𝑥 :: 𝑦𝑠) 𝑧𝑠 . However this would break Perm’s congruence wrt to ++, therefore violating
the axioms of permutation relations. Also, since we are working with the identity type directly, properties we would expect

from swap, such as reflexivity, transitivity, symmetry, congruence and such all comes directly by construction, whereas with

Perm we would have to prove these properties manually. We can also use the many combinatorics defined in the standard

library for equational reasoning, making the handling of SList equalities a lot simpler.

Proposition 11. ≈ is a equivalence relation.

Proof. We can show any array 𝑥𝑠 is related to itself by the identity isomorphism, therefore ≈ is reflexive. If 𝑥𝑠 ≈ 𝑦𝑠 by 𝜎 , we

can show 𝑦𝑠 ≈ 𝑥𝑠 by 𝜎−1
, therefore ≈ is symmetric. If 𝑥𝑠 ≈ 𝑦𝑠 by 𝜎 and 𝑦𝑠 ≈ 𝑧𝑠 by 𝜙 , we can show 𝑥𝑠 ≈ 𝑧𝑠 by 𝜎 ◦ 𝜙 , therefore

≈ is transitive. □

On a more technical note, since Array and Bag are not simple data types, the definition of the monoid operation on them

++ are necessarily more complicated, and unlike List, PList and SList, constructions of Array and Bag via ++ often would not

normalize into a very simple form, but would instead expand into giant trees of terms. This makes it such that when working

with Array and Bag we need to be very careful or otherwise Agda would be stuck trying to display the normalized form of

Array and Bag in the goal and context menu. Type-checking also becomes a lengthy process that tests if the user possesses

the virtue of patience.

However, performing arbitrary partitioning with Array and Bag is much easier than List, SList, PList. For example, one

can simply use the combinator Finn+m
∼−→ Finn + Finm to partition the array, then perform operations on the partitions such

as swapping in Proposition 13, or perform operations on the partitions individually such as two individual permutation

in Proposition 12. This makes it such that when defining divide-and-conquer algorithms such as merge sort, Bag and Array
are more natural to work with than List, SList, and PList.
We use *𝑥,𝑦, . . .+ to denote 𝜂𝐴 (𝑥) • 𝜂𝐴 (𝑦) • · · · : M(𝐴), and [𝑥,𝑦, . . .] to denote 𝜂𝐴 (𝑥) • 𝜂𝐴 (𝑦) • · · · : L(𝐴), or 𝑥 :: 𝑥𝑠 to

denote 𝜂𝐴 (𝑥) • 𝑥𝑠 : L(𝐴).

E Supplementary material for Section 6 (Application: Sorting Functions)
Proposition 28. ≼𝑠 is not necessarily transitive.

Proof. We give a counter-example of 𝑠 that would violate transitivity. Consider this section 𝑠 : SList(N) → List(N), we can
define a sort function sort : SList(N) → List(N) which sorts SList(N) ascendingly. We can use sort to construct 𝑠 .

𝑠 (𝑥𝑠) =
{
sort(𝑥𝑠) if length(𝑥𝑠) is odd
reverse(sort(𝑥𝑠)) otherwise

𝑠 ([2, 3, 1, 4]) = [4, 3, 2, 1]
𝑠 ([2, 3, 1]) = [1, 2, 3]

□

Proposition 29. Assume 𝐴 is a set with different elements, i.e. ∃𝑥,𝑦 : 𝐴. 𝑥 ≠ 𝑦, we cannot construct a full equivalence between
sections that satisfy im-cut and total orders on 𝐴.

19

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

CPP’25, Jan 19–25, 2025, Denver, CO, USA Anon.

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

Proof. We give a counter-example of 𝑠 that satisfy im-cut but is not a sort function. Consider the insertion sort function

sort : M(N) → L(N) parameterized by ≤:
reverseTail([]) = []

reverseTail(𝑥 :: 𝑥𝑠) = 𝑥 :: reverse(𝑥𝑠)
𝑠 (𝑥𝑠) = reverseTail(sort(𝑥𝑠))

𝑠 (*2, 3, 1, 4+) = [1, 4, 3, 2]
𝑠 (*2, 3, 1+) = [1, 3, 2]
𝑠 (*2, 3+) = [2, 3]

By Proposition 22 we can use sort to construct ≼𝑠 which would be equivalent to ≤. However, the ≼𝑠 constructed by 𝑠 would

also be equivalent to ≤. This is because 𝑠 sorts 2-element list correctly, despite 𝑠 ≠ sort. Since two different sections satisfying

im-cut maps to the same total order, there cannot be a full equivalence. □

20

	Abstract
	1 Introduction
	2 Notation
	3 Universal Algebra
	3.1 Algebras
	3.2 Free Algebras
	3.3 Equations

	4 Constructions of Free Monoids
	4.1 Lists
	4.2 Array

	5 Constructions of Free Comm. Monoids
	5.1 Free monoids with a quotient
	5.2 Lists quotiented by permutation
	5.3 Swap-List
	5.4 Bag

	6 Application: Sorting Functions
	6.1 Prelude
	6.2 Total orders
	6.3 Sorting functions

	7 Formalization
	8 Discussion
	A Supplementary material for Section 2 (Notation)
	A.1 Function extensionality
	A.2 Higher Inductive Types
	A.3 Univalence

	B Supplementary material for Section 3 (Universal Algebra)
	C Supplementary material for Section 4 (Constructions of Free Monoids)
	D Supplementary material for Section 5 (Constructions of Free Comm. Monoids)
	E Supplementary material for Section 6 (Application: Sorting Functions)

