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Symmetries in Sorting
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Abstract
Sorting algorithms are fundamental to computer science, and

their correctness criteria are well understood as rearranging

elements of a list according to a specified total order on the

underlying set of elements. Unfortunately, as mathematical

functions, they are rather violent, because they perform

combinatorial operations on the representation of the

input list. In this paper, we study sorting algorithms

conceptually as abstract sorting functions. We show that

sorting functions determine a well-behaved section (right

inverse) to the canonical surjection sending a free monoid

to a free commutative monoid of its elements. Introducing

symmetry by passing from free monoids (ordered lists)

to free commutative monoids (unordered lists) eliminates

ordering, while sorting (the right inverse) recovers ordering.

From this, we give an axiomatization of sorting which does

not require a pre-existing total order on the underlying

set, and then show that there is an equivalence between

(decidable) total orders on the underlying set and correct

sorting functions.

The first part of the paper develops concepts from

universal algebra from the point of view of functorial

signatures, and gives various constructions of free monoids

and free commutative monoids in type theory, which are

used to develop the second part of the paper about the

axiomatization of sorting functions. The paper uses informal

mathematical language, and comes with an accompanying

formalization in Cubical Agda.

Keywords: universal algebra, category theory, type theory,

homotopy type theory, combinatorics, formalization

1 Introduction
Consider a puzzle about sorting, inspired byDijkstra’s Dutch

National Flag problem [Dijkstra 1997, Ch.14]. Suppose there

are balls of three colors, corresponding to the colors of the

Dutch flag: red, white, and blue.

{ , , }

Given an unordered list (bag) of such balls, how many ways

can you sort them into the Dutch flag?

* , , , , , , , +

Obviously there is only one way, decided by the order the

colors appear in the Dutch flag: red < white < blue.

[ , , , , , , , ]
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What if we are avid enjoyers of vexillology who also want

to consider other flags? We might ask: how many ways can

we sort our unordered list of balls? We know that there are

only 3! = 6 permutations of {red,white, blue}, so there are

only 6 possible orderings we can define. In fact, there are

exactly 6 such categories of tricolor flags (see Wikipedia).

We have no allegiance to any of the countries presented by

the flags, hypothetical or otherwise – this is purely a matter

of combinatorics.

We posit that, because there are exactly 6 orderings, we

can only define 6 extensionally correct sorting functions.

Formally, there is a bijection between the set of orderings on

a carrier set𝐴 and the set of correct sorting functions on lists

of𝐴. In fact, a sorting function can be correctly axiomatized

just from the point of view of this bijection!

Outline and Contributions. The paper is organized as

follows:

• In § 2, we remark on the notation and type-theoretic

conventions used in the paper.

• In § 3, we describe a formalization of universal algebra

developed from the point of view of functorial signatures,

the definition and universal property of free algebras, and

algebras satisfying an equational theory.

• In § 4, we give various constructions of free monoids, and

their proofs of universal property. Then, in § 5, we add

symmetry to each representation of free monoids, and

extend the proofs of universal property from free monoids

to free commutative monoids. These constructions are

well-known, but we formalize them conceptually by

performing formal combinatorial operations.

• In § 6, we build on the constructions of the previous

sections and study sorting functions. The main result

in this section is to connect total orders, sorting, and

symmetry, by proving an equivalence between decidable

total orders on a carrier set 𝐴, and correct sorting

functions on lists of 𝐴.

• All the work in this paper is formalized in Cubical Agda,

which is discussed in § 7. The accompanying code is

available as supplementary material.

• § 8 discusses related and future work.

The three main parts of the paper can be read independently.

Readers interested in the formalization of universal algebra

can start from § 3. Readers interested in the constructions

of free monoids and free commutative monoids can skip

ahead to §§ 4 and 5. If the reader already believes in the

existence of free algebras for monoids and commutative

1
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monoids, they can directly skip to the application section on

sorting, in § 6. Although the formalization is a contribution

in itself, the purpose of the paper is not to directly discuss

the formalization, but to present the results in un-formalized

form (in type-theoretic foundations), so the ideas are

accessible to a wider audience.

2 Notation
The text follows the notational conventions of the HoTT/UF

book [Univalent Foundations Program 2013]. The work is

formalized in Cubical Agda which uses Cubical Type Theory

– we refer the readers to other works such as [Vezzosi et al.

2019] for an in-depth tutorial on Cubical Type Theory and

programming in Cubical Agda.

We denote the type of types with U, and choose to

drop universe levels. We use × for product types and +
for coproduct types. For mere propositions, we use ∧ to

denote conjunction, and ∨ to denote logical disjunction

(truncated coproduct). We use Finn to denote finite sets of

cardinality 𝑛 in HoTT. hProp and hSet denote the universe
of propositions and sets, respectively, and we write Set to
denote the (univalent) category of sets and functions.

3 Universal Algebra
We first develop some basic notions from universal algebra

and equational logic [Birkhoff 1935]. Universal algebra

is the abstract study of algebraic structures, which have

(algebraic) operations and (universal) equations. This gives

us a vocabulary and framework to express our results in.

The point of view we take is the standard category-theoretic

approach to universal algebra, which predates the Lawvere

theory or abstract clone point of view. We keep a running

example of monoids in mind, while explaining and defining

the abstract concepts.

3.1 Algebras
Definition 3.1 (Signature). A signature, denoted 𝜎 , is a

(dependent) pair consisting of:

• a set of operations, op : Set,
• an arity function for each symbol, ar : op → Set.

Example 3.2. A monoid is a set with an identity element

(a nullary operation), and a binary multiplication operation,

with signature 𝜎Mon ≔ (Fin2, 𝜆{0 ↦→ Fin0; 1 ↦→ Fin2}).
Every signature 𝜎 induces a signature functor 𝐹𝜎 on Set.

Definition 3.3 (Signature functor 𝐹𝜎 : Set → Set).

𝑋 ↦→ ∑
(𝑜 : op) 𝑋

ar(𝑜 )

𝑋
𝑓
−→ 𝑌 ↦→ ∑

(𝑜 : op) 𝑋
ar(𝑜 ) (𝑜,−◦𝑓 )

−−−−−−→ ∑
(𝑜 : op) 𝑌

ar(𝑜 )

Example 3.4. The signature functor for monoids, 𝐹𝜎Mon ,

assigns to a carrier set𝑋 , the sets of inputs for each operation.

Expanding the dependent product on Fin2, we obtain a

coproduct of sets: 𝐹𝜎Mon (𝑋 ) ≃ 𝑋 Fin0 + 𝑋 Fin2 ≃ 1 + (𝑋 × 𝑋 ).

A 𝜎-structure is given by a carrier set, with functions

interpreting each operation symbol. The signature functor

applied to a carrier set gives the inputs to each operation, and

the output is simply a map back to the carrier set. Formally,

these two pieces of data are an algebra for the 𝐹𝜎 functor.

We write 𝔛 for a 𝜎-structure with carrier set 𝑋 , following

the model-theoretic notational convention.

Definition 3.5 (Structure). A 𝜎-structure 𝔛 is an 𝐹𝜎 -

algebra, that is, a pair consisting of:

• a carrier set 𝑋 , and

• an algebra map 𝛼𝑋 : 𝐹𝜎 (𝑋 ) → 𝑋 .

Example 3.6. Concretely, an 𝐹𝜎Mon-algebra has the type

𝛼𝑋 : 𝐹𝜎Mon (𝑋 ) → 𝑋 ≃ (1 + (𝑋 × 𝑋 )) → 𝑋

≃ (1 → 𝑋 ) × (𝑋 × 𝑋 → 𝑋 )
which is the pair of functions interpreting the two operations.

Natural numbers N with (0,+) or (1,×) are examples of

monoid structures.

Definition 3.7 (Homomorphism). A homomorphism

between two 𝜎-structures 𝔛 and 𝔜 is a morphism of 𝐹𝜎 -

algebras, that is, a map 𝑓 : 𝑋 → 𝑌 such that:

𝐹𝜎 (𝑋 ) 𝑋

𝐹𝜎 (𝑌 ) 𝑌

𝛼𝑋

𝐹𝜎 (𝑓 ) 𝑓

𝛼𝑌

Example 3.8. Given two monoids 𝔛 and 𝔜, the top half

of the diagram is: 1 + (𝑋 × 𝑋 ) 𝛼𝑋−−→ 𝑋
𝑓
−→ 𝑌 , which applies

𝑓 to the output of each operation, and the bottom half is:

1 + (𝑋 × 𝑋 )
𝐹𝜎Mon (𝑓 )−−−−−−−→ 1 + (𝑌 × 𝑌 ) 𝛼𝑌−−→ 𝑌 . In other words, a

homomorphism between 𝑋 and 𝑌 is a map 𝑓 on the carrier

sets that commutes with the interpretation of the monoid

operations, or simply, preserves the monoid structure.

For a fixed signature 𝜎 , the category of 𝐹𝜎 -algebras and

their morphisms form a category of algebras, written 𝐹𝜎 -Alg,
or simply, 𝜎-Alg, given by the obvious definitions of identity

and composition of the underlying functions.

3.2 Free Algebras
The category 𝜎-Alg is a category of structured sets

and structure-preserving maps, which is an example

of a concrete category, that admits a forgetful functor

𝑈 : 𝜎-Alg → Set, In our notation, 𝑈 (𝔛) is simply 𝑋 , a

fact we exploit to simplify our notation, and formalization.

The left adjoint to this forgetful functor is the free algebra

construction, also known as the term algebra (or the

absolutely free algebra without equations). We rephrase this

in more concrete terms.

Definition 3.9 (Free Algebras). A free 𝜎-algebra

construction consists of the following data:

2
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• a set 𝐹 (𝑋 ), for every set 𝑋 ,

• a 𝜎-structure on 𝐹 (𝑋 ), written as𝔉(𝑋 ),
• a universal map 𝜂𝑋 : 𝑋 → 𝐹 (𝑋 ), for every 𝑋 , such that,

• for any 𝜎-algebra 𝔜, the operation assigning to each

homomorphism 𝑓 : 𝔛 → 𝔜, the map 𝑓 ◦ 𝜂𝑋 : 𝑋 → 𝑌 (or,

post-composition with 𝜂𝑋 ), is an equivalence.

More concretely, we are asking for a bijection between the

set of homomorphisms from the free algebra to any other

algebra, and the set of functions from the carrier set of the

free algebra to the carrier set of the other algebra. In other

words, there should be no more data in homomorphisms out

of the free algebra than there is in functions out of the carrier

set, which is the property of freeness. The inverse operation
to post-composition with 𝜂𝑋 is the universal extension of a

function to a homomorphism,

Definition 3.10 (Universal extension). The universal

extension of a function 𝑓 : 𝑋 → 𝑌 to a homomorphism out

of the free 𝜎-algebra on 𝑋 is written as 𝑓 ♯ : 𝔉(𝑋 ) → 𝔜.

It satisfies the identities: 𝑓 ♯ ◦ 𝜂𝑋 ∼ 𝑓 , 𝜂𝑋
♯ ∼ id𝔉 (𝑋 ) , and

(𝑔♯ ◦ 𝑓 )♯ ∼ 𝑔♯ ◦ 𝑓 ♯.

Free algebra constructions are canonically equivalent.

Proposition 1. Suppose 𝔉(𝑋 ) and 𝔊(𝑋 ) are both free 𝜎-
algebras on 𝑋 . Then𝔉(𝑋 ) ≃𝔊(𝑋 ), natural in 𝑋 .

So far, we’ve only discussed abstract properties of free

algebras, but not actually given a construction! In type

theory, free constructions are often given by inductive types,

where the constructors are the pieces of data that freely

generate the structure, and the type-theoretic induction

principle enforces the category-theoretic universal property.

Definition 3.11 (Construction of Free Algebras). The free
𝜎-algebra on a type 𝑋 is given by the inductive type:

data Tree (X : U) : U where
leaf : X → Tree X

node : F𝜎(Tree X) → Tree X

The constructors leaf and node are, abstractly, the

generators for the universal map, and the algebra map,

respectively. Concretely, this is the type of abstract syntax

trees for terms in the signature 𝜎 – the leaves are the free

variables, and the nodes are the branching operations of the

tree, marked by the operations in 𝜎 .

Proposition 2. (Tree(X),leaf) is the free 𝜎-algebra on 𝑋 .

3.3 Equations
The algebraic framework of universal algebra we have

described so far only captures operations, not equations.

These algebras are lawless (or wild or absolutely free) –
saying the 𝐹𝜎Mon-algebras are monoids, or𝔉𝜎Mon-algebras are

free monoids is not justified. For example, by associativity,

these two trees of (N,+) should be identified as equal.

2 1 1

+

+

2 1 1

+

+

To impose equations on the operations, we adopt the point

of view of equational logic.

Definition 3.12 (Equational Signature). An equational

signature, denoted 𝜀, is a (dependent) pair consisting of:

• a set of names for equations, eq : Set,
• an arity of free variables for each equation, fv : eq → Set.

Example 3.13. The equational signature for monoids

𝜀Mon is: (Fin3, 𝜆{0 ↦→ Fin1; 1 ↦→ Fin1; 2 ↦→ Fin3}).
The three equations are the left and right unit laws,

and the associativity law – a 3-element set of names

{unitl, unitr, assoc}. The two unit laws use one free variable,
and the associativity law uses three free variables.

Just like the signature functor Definition 3.3, this produces

an equational signature functor on Set.

Definition 3.14 (Eq. Signature Functor 𝐹𝜀 : Set → Set).

𝑋 ↦→ ∑
(𝑒 : eq) 𝑋

fv(𝑒 )

𝑋
𝑓
−→ 𝑌 ↦→ ∑

(𝑒 : eq) 𝑋
ar(𝑒 ) (𝑒,−◦𝑓 )

−−−−−−→ ∑
(𝑒 : eq) 𝑌

ar(𝑒 )

To build equations out of this signature, we use the 𝜎-

operations and construct trees for the left and right-hand

sides of each equation using the free variables available – a

system of equations.

Definition 3.15 (System of Equations). A system of

equations over a signature (𝜎, 𝜀), is a pair of natural

transformations:

𝓁, 𝓇 : 𝐹𝜀 ⇒ 𝔉𝜎 .

Concretely, for any set (of variables) 𝑉 , this gives a pair

of trees 𝓁𝑉 , 𝓇𝑉 : 𝐹𝜀 (𝑉 ) → 𝔉𝜎 (𝑉 ), and naturality ensures

correctness of renaming.

Example 3.16. Given 𝑥 : 𝑉 , 𝓁𝑉 (unitl, (𝑥)), 𝓇𝑉 (unitl, (𝑥))
are defined as:

𝑒 𝑥

•

𝑥

Given 𝑥 : 𝑉 , 𝓁𝑉 (unitr, (𝑥)), 𝓇𝑉 (unitr, (𝑥)) are defined as:

𝑥 𝑒

•

𝑥

Given 𝑥,𝑦, 𝑧 : 𝑉 , 𝓁𝑉 (assocr, (𝑥,𝑦, 𝑧)), 𝓇𝑉 (assocr, (𝑥,𝑦, 𝑧))
are defined as:

3
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•

•

𝑥 𝑦 𝑧

•

•

Finally, we have to say how a given 𝜎-structure 𝔛 satisfies
the system of equations 𝑇(𝜎,𝜀 ) . We need to assign a value to

each free variable in the equation, picking them out of the

carrier set, which is the valuation function 𝜌 : 𝑉 → 𝑋 . Given

such an assignment, we evaluate the left and right trees of

the equation, by extending 𝜌 (using Definition 3.10), that

is by construction, a homomorphism from 𝔉(𝑉 ) to 𝔛. To

satisfy an equation, these two evaluations should agree.

Definition 3.17 (𝔛 ⊨ 𝑇 ). A 𝜎-structure 𝔛 satisfies the

system of equations 𝑇(𝜎,𝜀 ) if for every set 𝑉 , and every

assignment 𝜌 : 𝑉 → 𝑋 , 𝜌♯ is a (co)fork:

𝐹𝜀 (𝑉 ) 𝔉(𝑉 ) 𝔛
𝜌♯

𝓁𝑉

𝓇𝑉

There is a full subcategory of 𝜎-Alg which is the

variety of algebras satisfying these equations. Constructions

of free objects for any arbitrary variety requires non-

constructive principles [Blass 1983, § 7, pg.142], in particular,

the arity sets need to be projective, so we do not give the

general construction. The non-constructive principles can

be avoided if we limit ourselves to specific constructions

where everything is finitary. Of course, HoTT/UF offers

an alternative by allowing higher generators for equations

using HITs [Univalent Foundations Program 2013]. We do

not develop the framework further, since we have enough

tools to develop the next sections.

4 Constructions of Free Monoids
In this section, we consider various constructions of free

monoids in type theory, with proofs of their universal

property. Since each construction satisfies the same

categorical universal property, by Proposition 1, these are

canonically equivalent (hence equal, by univalence) as types

(and as monoids), allowing us to transport proofs between

them. Using the unviersal property allows us to define and

prove our programs correct in one go, which is used in § 6.

4.1 Lists
Cons-lists (or sequences) are simple inductive datatypes,

well-known to functional programmers, and are the most

common representation of free monoids in programming

languages. In category theory, these correspond to Kelly’s

notion of algebraically-free monoids [Kelly 1980].

Definition 4.1 (Lists).

data List (A : U) : U where
[] : List A

_ :: _ : A → List A → List A

The (universal) generators map is the singleton: 𝜂𝐴 (𝑎) ≔
[𝑎] ≡ a :: [], the identity element is the empty list [], and
the monoid operation ++ is given by concatenation.

Proposition 3. (−)♯ lifts a function 𝑓 : 𝐴 → 𝑋 to a monoid
homomorphism 𝑓 ♯ : List(𝐴) → 𝔛.

Proposition 4 (Universal property for List). (List(𝐴), 𝜂𝐴)
is the free monoid on 𝐴.

4.2 Array
An alternate (non-inductive) representation of the free

monoid on a carrier set, or alphabet 𝐴, is 𝐴∗
, the set of all

finite words or strings or sequences of characters drawn from
𝐴, which was known in category theory from [Dubuc 1974].

In computer science, we think of this as an array, which is a

pair of a natural number 𝑛, denoting the length of the array,

and a lookup (or index) function Finn → 𝐴, mapping each

index to an element of 𝐴. In type theory, this is also often

understood as a container [Abbott et al. 2003], where N is

the type of shapes, and Fin is the type (family) of positions.

Definition 4.2 (Arrays).

Array : U → U
Array A = Σ(n : Nat) (Fin n → A)

For example, (3, 𝜆{0 ↦→ 3, 1 ↦→ 1, 2 ↦→ 2}) represents the
same list as [3, 1, 2]. The (universal) generators map is the

singleton: 𝜂𝐴 (𝑎) = (1, 𝜆{0 ↦→ 𝑎}), the identity element is

(0, 𝜆{}) and the monoid operation ++ is array concatenation.

Lemma 1. Zero-length arrays (0, 𝑓 ) are contractible.

Definition 4.3 (Concatenation). The concatenation

operation ++, is defined below, where ⊕ : (Finn → 𝐴) →
(Finm → 𝐴) → (Finn+m → 𝐴) is a combine operation:

(𝑛, 𝑓 ) ++ (𝑚,𝑔) = (𝑛 +𝑚, 𝑓 ⊕ 𝑔)

(𝑓 ⊕ 𝑔) (𝑘) =
{
𝑓 (𝑘) if 𝑘 < 𝑛

𝑔(𝑘 − 𝑛) otherwise

Proposition 5. (Array(𝐴),++) is a monoid.

Lemma 2 (Array cons). Any array (𝑆 (𝑛), 𝑓 ) is equal to
𝜂𝐴 (𝑓 (0)) ++ (𝑛, 𝑓 ◦ 𝑆).

Lemma 3 (Array split). For any array (𝑆 (𝑛), 𝑓 ) and (𝑚,𝑔),

(𝑛 +𝑚, (𝑓 ⊕ 𝑔) ◦ 𝑆) = (𝑛, 𝑓 ◦ 𝑆) ++ (𝑚,𝑔) .

Informally, this means given an non-empty array 𝑥𝑠 and

any array 𝑦𝑠 , concatenating 𝑥𝑠 with 𝑦𝑠 then dropping the

first element is the same as dropping the first element of 𝑥𝑠

then concatenating with 𝑦𝑠 .

4
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Definition 4.4 (Universal extension). Given a monoid 𝔛,

and a map 𝑓 : 𝐴 → 𝑋 , we define 𝑓 ♯ : Array(𝐴) → 𝑋 , by

induction on the length of the array:

𝑓 ♯ (0, 𝑔) = 𝑒

𝑓 ♯ (𝑆 (𝑛), 𝑔) = 𝑓 (𝑔(0)) • 𝑓 ♯ (𝑛,𝑔 ◦ 𝑆)

Proposition 6. (−)♯ lifts a function 𝑓 : 𝐴 → 𝑋 to a monoid
homomorphism 𝑓 ♯ : Array(𝐴) → 𝔛.

Proposition 7 (Universal property for Array).
(Array(𝐴), 𝜂𝐴) is the free monoid on 𝐴.

Proof sketch. We need to show that (−)♯ is an inverse to

(−) ◦ 𝜂𝐴. 𝑓 ♯ ◦ 𝜂𝐴 = 𝑓 for all set functions 𝑓 : 𝐴 → 𝑋 holds

trivially. To show (𝑓 ◦ 𝜂𝐴)♯ = 𝑓 for all homomorphisms

𝑓 : Array(𝐴) → 𝔛, we need ∀𝑥𝑠. (𝑓 ◦ 𝜂𝐴)♯ (𝑥𝑠) = 𝑓 (𝑥𝑠).
Lemmas 2 and 3 allow us to do induction on arrays, therefore

we can prove ∀𝑥𝑠. (𝑓 ◦ 𝜂𝐴)♯ (𝑥𝑠) = 𝑓 (𝑥𝑠) by induction on 𝑥𝑠 ,
very similarly to how this was proven for List. □

Remark. An alternative proof of the universal property

for Array can be given by directly constructing an

equivalence (of types, and monoid structures) between

Array(𝐴) and List(𝐴) (using tabulate and lookup), and then
using univalence and transport (see formalization).

5 Constructions of Free Comm. Monoids
The next step is to add commutativity to each construction

of free monoids. Informally, adding commutativity to free

monoids turns “ordered lists” to “unordered lists”, where the

ordering is the one imposed by the position or index of the

elements in the list. This is crucial to our goal of studying

sorting, as we will study sorting as a function mapping back

unordered lists to ordered lists, which is later in § 6.3.

It is known that finite multisets are (free) commutative

monoids, under the operation of multiset union: 𝑥𝑠 ∪ 𝑦𝑠 =

𝑦𝑠 ∪ 𝑥𝑠 . The order is “forgotten” in the sense that it

doesn’t matter how two multisets are union-ed together,

such as, *𝑎, 𝑎, 𝑏, 𝑐+ = *𝑏, 𝑎, 𝑐, 𝑎+ are equal as finite multisets

(justifying the bag notation). This is unlike free monoids,

where [𝑎, 𝑎, 𝑏, 𝑐] ≠ [𝑏, 𝑎, 𝑐, 𝑎] (justifying the list notation).

5.1 Free monoids with a quotient
Instead of constructing free commutative monoids directly,

the first construction we study is to take any free monoid

and quotient by symmetries. Specific instances of this

construction are given in §§ 5.2 and 5.4.

From the universal algebraic perspective developed in § 3,

this means to extend the equational theory of a given

algebraic signature with symmetries. If (𝔉(𝐴), 𝜂) is a free

monoid construction satisfying its universal property, then

we’d like to quotient 𝐹 (𝐴) by an appropriate symmetry

relation ≈. This is exactly a permutation relation!

Definition 5.1 (Permutation relation). A binary relation ≈
on free monoids is a correct permutation relation iff it:

• is reflexive, symmetric, transitive (an equivalence),

• is a congruence wrt •: 𝑎 ≈ 𝑏 → 𝑐 ≈ 𝑑 → 𝑎 • 𝑐 ≈ 𝑏 • 𝑑 ,
• is commutative: 𝑎 • 𝑏 ≈ 𝑏 • 𝑎, and
• respects (−)♯: ∀𝑓 , 𝑎 ≈ 𝑏 → 𝑓 ♯ (𝑎) = 𝑓 ♯ (𝑏).

Let 𝑞 : 𝐹 (𝐴) ↠ 𝐹 (𝐴)�≈ be the quotient (inclusion) map.

The generators map is given by 𝑞 ◦ 𝜂𝐴, the identity element

is 𝑞(𝑒), and the • operation is lifted to the quotient by

congruence.

Proposition 8. (𝔉(𝐴)�≈, •, 𝑞(𝑒)) is a commutative monoid.

For clarity, we will use (̂−) to denote the extension operation
of 𝐹 (𝐴), and (−)♯ for the extension operation of 𝐹 (𝐴)�≈.

Definition 5.2. Given a commutative monoid 𝔛 and a map

𝑓 : 𝐴 → 𝑋 , we define 𝑓 ♯ : 𝔉(𝐴)�≈ → 𝔛 as follows: we first

obtain 𝑓 : 𝔉(𝐴) → 𝔛 by universal property of 𝐹 , and lift it

to𝔉(𝐴)�≈ → 𝔛, which is allowed since ≈ respects (−)♯.

Proposition 9 (Universal property for 𝔉(𝐴)�≈).
(𝔉(𝐴)�≈, 𝜂𝐴 : 𝐴

𝜂𝐴−−→ 𝔉(𝐴)
𝑞
−→ 𝔉(𝐴)�≈) is the free comm.

monoid on 𝐴.

5.2 Lists quotiented by permutation
A specific instance of this construction is List quotiented by
a permutation relation to get commutativity. We study one

such construction (PList), considered in [Joram and Veltri

2023], who give a proof that PList is equivalent to the free

commutativemonoid (constructed as aHIT). We give a direct

proof of its universal property using our generalisation.

Of course, there are many permutation relations in

the literature, we consider the one which swaps any two

adjacent elements somewhere in the middle of the list.

Definition 5.3 (PList).

data Perm (A : U) : List A → List A → U where
perm-refl : ∀ {xs} → Perm xs xs

perm-swap : ∀ {x y xs ys zs}

→ Perm (xs ++ x :: y :: ys) zs

→ Perm (xs ++ y :: x :: ys) zs

PList : U → U
PList A = List A � Perm

By § 5.1, it suffices to show Perm satisfies the axioms of

permutation relation to show PList is the free commutative

monoid.

Proposition 10. Let 𝔛 be a commutative monoid, and
𝑓 : 𝐴 → 𝑋 . For 𝑥,𝑦 : 𝐴 and 𝑥𝑠,𝑦𝑠 : PList(𝐴), 𝑓 ♯ (𝑥𝑠 ++ 𝑥 ::

𝑦 :: 𝑦𝑠) = 𝑓 ♯ (𝑥𝑠 ++ 𝑦 :: 𝑥 :: 𝑦𝑠). Hence, Perm respects (−)♯.
5
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Remarks. With this representation it is very easy to lift

functions and properties defined on List to PList since

PList is a quotient of List. The inductive nature of PList
makes it very easy to define algorithms and proofs that

are inductive in nature, e.g. defining insertion sort on PList
is very simple since insertion sort inductively sorts a list,

which we can easily do by pattern matching on PList since
the construction of PList is definitionally inductive. This

property also makes it such that oftentimes inductively

constructed PList would normalize to the simplest form of

the PList, e.g. 𝑞( [𝑥]) ++𝑞( [𝑦, 𝑧]) normalizes to 𝑞( [𝑥,𝑦, 𝑧]) by
definition, saving the efforts of defining auxillary lemmas to

prove their equality.

This inductive nature, however, makes it difficult to define

efficient operations on PList. Consider a divide-and-conquer
algorithm such as merge sort, which involves partitioning a

PList of length 𝑛 +𝑚 into two smaller PList of length 𝑛 and

length𝑚. The inductive nature of PList makes it such that

we must iterate all 𝑛 elements before we can make such a

partition, thus making PList unintuitive to work with when

we want to reason with operations that involve arbitrary

partitioning.

5.3 Swap-List
Informally, quotients are defined by generating all the

points, then quotienting out into equivalence classes by

the congruence relation. Alternately, HITs use generators

(points) and higher generators (paths) (and higher higher

generators and so on. . . ). We can define free commutative

monoids using HITs were adjacent swaps generate all

symmetries, for example swap-lists taken from [Choudhury

and Fiore 2023] (and in the Cubical library).

data SList (A : U) : U where
[] : SList A

_ :: _ : A → SList A → SList A

swap : ∀ x y xs → x :: y :: xs = y :: x :: xs

trunc : ∀ x y → (p q : x = y) → p = q

Remarks. Much like PList and List, SList is inductively

defined, therefore making it very intuitive to reason with

when defining inductive operations or inductive proofs

on SList, however difficult to reason with when defining

operations that involve arbitrary partitioning, for reasons

similar to those given in § 5.2.

5.4 Bag
Alternatively, we can also quotient Array by symmetries

to get commutativity. This construction is first considered

in [Altenkirch et al. 2011] and [Li 2015], then partially

considered in [Choudhury and Fiore 2023], and also

in [Joram and Veltri 2023], who gave a similar construction,

where only the index function is quotiented, instead of

the entire array. [Danielsson 2012] also considered Bag as

a setoid relation on List in an intensional MLTT setting.

[Joram and Veltri 2023] prove that their version of Bag is

the free commutative monoid by equivalence to the other

HIT constructions. We give a direct proof of its universal

property instead, using the technology we have developed.

Definition 5.4 (Bag).

_≈_ : Array A → Array A → U
(n , f) ≈ (m , g) = Σ(𝜎 : Fin n ≃ Fin m) v = w ◦ 𝜎

Bag : U → U
Bag A = Array A � _≈_

Note that by the pigeonhole principle, 𝜎 can only be

constructed when 𝑛 = 𝑚, though this requires a proof in

type theory (see the formalization). Conceptually, we are

quotienting Array by an automorphism on the indices.

We have already given a proof of Array being the free

monoid in § 4.2. By § 5.1 it suffices to show ≈ satisfies the

axioms of permutation relations to show that Bag is the free
commutative monoid.

Proposition 11. ≈ is a equivalence relation.

Proposition 12. ≈ is congruent wrt to ++.

Proof. Given (𝑛, 𝑓 ) ≈ (𝑚,𝑔) by 𝜎 and (𝑢, 𝑝) ≈ (𝑣, 𝑞) by 𝜙 ,

we want to show (𝑛, 𝑓 ) ++ (𝑢, 𝑝) ≈ (𝑚,𝑔) ++ (𝑣, 𝑞) by some 𝜏 .

We construct 𝜏 as follows:

𝜏 ≔ Finn+u
∼−→ Finn + Finu

𝜎,𝜙
−−−→ Finm + Finv

∼−→ Finm+v

which operationally performs:

{0, 1, . . . , 𝑛 − 1, 𝑛, 𝑛 + 1, . . . , 𝑛 + 𝑢 − 1}

{𝜎 (0), 𝜎 (1) . . . , 𝜎 (𝑛 − 1), 𝜙 (0), 𝜙 (1), . . . , 𝜙 (𝑢 − 1)}
𝜎,𝜙 .

□

Proposition 13. ≈ is commutative.

Proof. We want to show for any arrays (𝑛, 𝑓 ) and (𝑚,𝑔),
(𝑛, 𝑓 ) • (𝑚,𝑔) ≈ (𝑚,𝑔) • (𝑛, 𝑓 ) by some 𝜙 . We can

use combinators from formal operations in symmetric rig

groupoids [Choudhury, Karwowski, et al. 2022] to define 𝜙 :

𝜙 ≔ Finn+m
∼−→ Finn + Finm

swap+−−−−→ Finm + Finn
∼−→ Finm+n

which operationally performs:

{0, 1, . . . , 𝑛 − 1, 𝑛, 𝑛 + 1, . . . , 𝑛 +𝑚 − 1}

{𝑛, 𝑛 + 1 . . . , 𝑛 +𝑚 − 1, 0, 1, . . . , 𝑛 − 1}
𝜙

□

Proposition 14. ≈ respects (−)♯ for arrays.
6
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It suffices to show that 𝑓 ♯ is invariant under permutation: for

all 𝜙 : Finn
∼−→ Finn, 𝑓 ♯ (𝑛, 𝑖) = 𝑓 ♯ (𝑛, 𝑖 ◦ 𝜙). To prove this we

first need to develop some formal combinatorics of punching
in and punching out indices. These operations are borrowed
from [Mozler 2021] and developed further in [Choudhury,

Karwowski, et al. 2022] for studying permutation codes.

Lemma 4. Given 𝜙 : FinS(n)
∼−→ FinS(n) , there is a

permutation 𝜏 : FinS(n)
∼−→ FinS(n) such that 𝜏 (0) = 0, and

𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜙) = 𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜏).

Proof. Let 𝑘 be 𝜙−1 (0), and 𝑘 + 𝑗 = 𝑆 (𝑛), we construct 𝜏 :

𝜏 ≔ FinS(n)
𝜙
−→ FinS(n)

∼−→ Fink+j
∼−→ Fink + Finj

swap+−−−−→ Finj + Fink
∼−→ Finj+k

∼−→ FinS(n)

{0, 1, 2, . . . , 𝑘, 𝑘 + 1, 𝑘 + 2, . . .}

{𝑥,𝑦, 𝑧, . . . , 0, 𝑢, 𝑣, . . .}
𝜙

{0, 1, 2, . . . , 𝑘, 𝑘 + 1, 𝑘 + 2, . . .}

{0, 𝑢, 𝑣, . . . , 𝑥,𝑦, 𝑧, . . .}
𝜏

It is trivial to show 𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜙) = 𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜏), since
the only operation on indices in 𝜏 is swap+. It suffices

to show (𝑆 (𝑛), 𝑖 ◦ 𝜙) can be decomposed into two arrays

such that (𝑆 (𝑛), 𝑖 ◦ 𝜙) = (𝑘,𝑔) ++ ( 𝑗, ℎ) for some 𝑔 and ℎ.

Since the image of 𝑓 ♯ is a commutative monoid, and 𝑓 ♯ is a

homomorphism, 𝑓 ♯ ((𝑘,𝑔) ++ ( 𝑗, ℎ)) = 𝑓 ♯ (𝑘,𝑔) • 𝑓 ♯ ( 𝑗, ℎ) =

𝑓 ♯ ( 𝑗, ℎ) • 𝑓 ♯ (𝑘,𝑔) = 𝑓 ♯ (( 𝑗, ℎ) ++ (𝑘,𝑔)), thereby proving

𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜙) = 𝑓 ♯ (𝑆 (𝑛), 𝑖 ◦ 𝜏).
□

Lemma 5. Given 𝜏 : FinS(n)
∼−→ FinS(n) where 𝜏 (0) = 0, there

is a𝜓 : Finn
∼−→ Finn such that 𝜏 ◦ 𝑆 = 𝑆 ◦𝜓 .

Proof. We construct𝜓 as 𝜓 (𝑥) = 𝜏 (𝑆 (𝑥)) − 1. Since 𝜏 maps

only 0 to 0 by assumption, ∀𝑥 . 𝜏 (𝑆 (𝑥)) > 0, therefore the

(−1) is well defined. This is the special case for 𝑘 = 0 in

the punch-in and punch-out equivalence for Lehmer codes

in [Choudhury, Karwowski, et al. 2022].

{0, 1, 2, 3, . . .}

{0, 𝑥,𝑦, 𝑧 . . .}
𝜏

{0, 1, 2, . . .}

{𝑥 − 1, 𝑦 − 1, 𝑧 − 1 . . .}
𝜓

□

Theorem 5.5 (Permutation invariance). For all 𝜙 : Finn
∼−→

Finn, 𝑓 ♯ (𝑛, 𝑖) = 𝑓 ♯ (𝑛, 𝑖 ◦ 𝜙).

Proof. By induction on 𝑛.

• On 𝑛 = 0, 𝑓 ♯ (0, 𝑖) = 𝑓 ♯ (0, 𝑖 ◦ 𝜙) = 𝑒 .

• On 𝑛 = 𝑆 (𝑚),
𝑓 ♯ (𝑆 (𝑚), 𝑖 ◦ 𝜙)

= 𝑓 ♯ (𝑆 (𝑚), 𝑖 ◦ 𝜏) by Lemma 4

= 𝑓 (𝑖 (𝜏 (0))) • 𝑓 ♯ (𝑚, 𝑖 ◦ 𝜏 ◦ 𝑆) by definition of (−)♯
= 𝑓 (𝑖 (0)) • 𝑓 ♯ (𝑚, 𝑖 ◦ 𝜏 ◦ 𝑆) by construction of 𝜏

= 𝑓 (𝑖 (0)) • 𝑓 ♯ (𝑚, 𝑖 ◦ 𝑆 ◦𝜓 ) by Lemma 5

= 𝑓 (𝑖 (0)) • 𝑓 ♯ (𝑚, 𝑖 ◦ 𝑆) induction

= 𝑓 ♯ (𝑆 (𝑚), 𝑖) by definition of (−)♯

□

Remarks. Unlike PList and SList, Bag and its underlying

construction Array are not inductively defined, making it

difficult to work with when trying to do induction on them.

For example, in the proof Proposition 7, two Lemmas 2 and 3

are needed to do induction on Array, as opposed to List
and its quotients, where we can do induction simply by

pattern matching. Much like PList, when defining functions

on Bag, we need to show they respect ≈, i.e. 𝑎𝑠 ≈ 𝑏𝑠 →
𝑓 (𝑎𝑠) = 𝑓 (𝑏𝑠). This is notably much more difficult than

PList and SList, because whereas with PList and SList we
only need to consider "small permutations" (i.e. swapping

adjacent elements),withBagwe need to consider all possible
permutations. For example, in the proof of Theorem 5.5, we

need to first construct a 𝜏 which satisfies 𝜏 (0) = 0 and prove

𝑓 ♯ (𝑛, 𝑖 ◦ 𝜎) = 𝑓 ♯ (𝑛, 𝑖 ◦ 𝜏) before we can apply induction.

6 Application: Sorting Functions
Wewill nowput towork the universal properties of our types

of (ordered) lists and unordered lists, to define operations

on them systematically, which are mathematically sound,

and reason about them. First, we explore definitions

of various operations on both free monoids and free

commutative monoids. By univalence (and the structure

identity principle), everything henceforth holds for any

presentation of free monoids and free commutative monoids,

therefore we avoid picking a specific construction. We

use F (𝐴) to denote the free monoid or free commutative

monoid on 𝐴, L(𝐴) to exclusively denote the free monoid

construction, and M(𝐴) to exclusively denote the free

commutative monoid construction.

For example length is a common operation defined

inductively for List, but usually in proof engineering,

properties about length, e.g. length(𝑥𝑠 ++𝑦𝑠) = length(𝑥𝑠) +
length(𝑦𝑠), are proven externally. In our framework of

free algebras, where the (−)♯ operation is a correct-by-

construction homomorphism, we can define operations like

length directly by universal extension, which also gives us a

proof that they are homomorphisms for free. Note, the fold

operation in functional programming is the homomorphism

mapping out into the monoid of endofunctions. A further

application of the universal property is to prove two

different types are equal, by showing they both satisfy

the same universal property (see Proposition 1), which
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is desirable especially when proving a direct equivalence

between the two types turns out to be a difficult exercise in

combinatorics.

6.1 Prelude
Any presentation of free monoids or free commutative

monoids has a length : F (𝐴) → N function. N is a monoid

with (0,+), and further, the + operation is commutative.

Definition 6.1 (length). The length homomorphism is

defined as length ≔ (𝜆𝑥 . 1)♯ : F (𝐴) → N.

Going further, any presentation of free monoids or

free commutative monoids has a membership predicate

− ∈ − : 𝐴 → F (𝐴) → hProp, for any set 𝐴. For extension,

we use the fact that hProp forms a (commutative) monoid

under disjunction: ∨ and false: ⊥.

Definition 6.2 (∈). The membership predicate on a set 𝐴

for each element 𝑥 : 𝐴 is 𝑥 ∈ − ≔よ𝐴 (𝑥)
♯
: F (𝐴) → hProp,

where we defineよ𝐴 (𝑥) ≔ 𝜆𝑦. 𝑥 = 𝑦 : 𝐴 → hProp.

よ is formally the Yoneda map under the “types

are groupoids” correspondence, where 𝑥 : 𝐴 is being

sent to its representable in the Hom-groupoid (formed

by the identity type), of type hProp. Note that the

proofs of (commutative) monoid laws for hProp use

equality, which requires the use of univalence (or at

least, propositional extensionality). By construction, this

membership predicate satisfies its homomorphic properties

(the colluquial here/there constructors for de Bruijn

indices).

We note that hProp is actually one type level higher

than 𝐴. To make the type level explicit, 𝐴 is of type level

ℓ , and since hPropℓ is the type of all types 𝑋 : Uℓ that are

mere propositions, hPropℓ has type level ℓ + 1. While we

can reduce to the type level of hPropℓ to ℓ if we assume

Voevodsky’s propositional resizing axiom [Voevodsky 2011],

we chose not to do so and work within a relative monad

framework similar to [Choudhury and Fiore 2023, Section 3].

In the formalization, (−)♯ is type level polymorphic to

accommodate for this. We explain this further in § 7.

More generally, any presentation of free (commutative)

monoids F (𝐴) also supports the Any and All predicates,
which allow us to lift a predicate 𝐴 → hProp (on 𝐴), to

any or all elements of 𝑥𝑠 : F (𝐴), respectively. In fact, hProp
forms a (commutative) monoid in two different ways: (⊥,∨)
and (⊤,∧) (disjunction and conjunction), which are the two

different ways to get Any and All, respectively.

Definition 6.3 (Any and All).

Any(𝑃) ≔ 𝑃♯
: F (𝐴) → (hProp,⊥,∨)

All(𝑃) ≔ 𝑃♯
: F (𝐴) → (hProp,⊤,∧)

Remark. Note that Cubical Agda has problems with

indexing over HITs, hence it is preferable to program with

our universal properties, such as when defining Any and

All, because the (indexed) inductive definitions of these

predicates get stuck on transp terms.

There is a head function on lists, which is a function that

returns the first element of a non-empty list. Formally, this

is a monoid homomorphism from L(𝐴) to 1 +𝐴.

Definition 6.4 (head). The head homomorphism is defined

as head ≔ inr♯ : L(𝐴) → 1+𝐴, where the monoid structure

on 1+𝐴 has unit 𝑒 ≔ inl(★) : 1+𝐴, and multiplication picks

the leftmost element that is defined.

inl(★) ⊕ 𝑏 ≔ 𝑏

inr(𝑎) ⊕ 𝑏 ≔ inr(𝑎)
Note that the monoid operation ⊕ is not commutative,

since swapping the input arguments to ⊕ would return

the leftmost or rightmost element. To make it commutative

would require a canonical way to pick between two elements

– this leads us to the next section.

6.2 Total orders
First, we recall the axioms of a total order ≤ on a set 𝐴.

Definition 6.5 (Total order). A total order on a set 𝐴 is a

relation ≤ : 𝐴 → 𝐴 → hProp that satisfies:

• reflexivity: 𝑥 ≤ 𝑥 ,

• transitivity: if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧,

• antisymmetry: if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 , then 𝑥 = 𝑦,

• strong-connectedness: ∀𝑥,𝑦, either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 .

Note that either-or means that this is a (truncated) logical

disjunction. In the context of this paper, we want to make a

distinction between “decidable total order” and “total order”.

A decidable total order requires the≤ relation to be decidable:

• decidability: ∀𝑥,𝑦, we have 𝑥 ≤ 𝑦 + ¬(𝑥 ≤ 𝑦).

This strengthens the strong-connectedness axiom, where

we have either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 merely as a proposition, but

decidability allows us to actually compute if 𝑥 ≤ 𝑦 is true.

Proposition 15. In a decidable total order, it holds that
∀𝑥,𝑦, (𝑥 ≤ 𝑦) + (𝑦 ≤ 𝑥). Further, this makes𝐴 discrete, that is
∀𝑥,𝑦, (𝑥 = 𝑦) + (𝑥 ≠ 𝑦).

An equivalent way to define a total order is using a binary

meet operation (without starting from an ordering relation).

Definition 6.6 (Meet semi-lattice). A meet semi-lattice is a

set 𝐴 with a binary operation − ⊓ − : 𝐴 → 𝐴 → 𝐴 that is:

• idempotent: 𝑥 ⊓ 𝑥 = 𝑥 ,

• associative: (𝑥 ⊓ 𝑦) ⊓ 𝑧 = 𝑥 ⊓ (𝑦 ⊓ 𝑧),
• commutative: 𝑥 ⊓ 𝑦 = 𝑦 ⊓ 𝑥 .

A strongly-connected meet semi-lattice further satisfies:

• strong-connectedness: ∀𝑥,𝑦, either 𝑥⊓𝑦 = 𝑥 or 𝑥⊓𝑦 = 𝑦.

A total meet semi-lattice strengthens this to:

8
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• totality: ∀𝑥,𝑦, (𝑥 ⊓ 𝑦 = 𝑥) + (𝑥 ⊓ 𝑦 = 𝑦).

Proposition 16. A total order ≤ on a set 𝐴 is equivalent to a
strongly-connected meet semi-lattice structure on 𝐴. Further,
a decidable total order on 𝐴 induces a total meet semi-lattice
structure on 𝐴.

Proof sketch. Given a (mere) total order ≤ on a set 𝐴, we

define 𝑥 ⊓ 𝑦 ≔ if 𝑥 ≤ 𝑦 then𝑥 else𝑦. Crucially, this map is

locally-constant, allowing us to eliminate from an hProp to

an hSet. Meets satisfy the universal property of products,

that is, 𝑐 ≤ 𝑎 ⊓ 𝑏 ⇔ 𝑐 ≤ 𝑎 ∧ 𝑐 ≤ 𝑏, and the axioms follow

by calculation usingよ-arguments. Conversely, given a meet

semi-lattice, we define 𝑥 ≤ 𝑦 ≔ 𝑥 ⊓ 𝑦 = 𝑥 , which defines

an hProp-valued total ordering relation. If the total order is

decidable, we use the discreteness of 𝐴 from Proposition 15.

□

Finally, tying this back to Definition 6.4, we have the

following for free commutative monoids.

Definition 6.7 (head). Assume a total order ≤ on a set 𝐴.

We define a commutative monoid structure on 1 + 𝐴, with

unit 𝑒 ≔ inl(★) : 1 +𝐴, and multiplication defined as:

inl(★) ⊕ 𝑏 ≔ 𝑏

inr(𝑎) ⊕ inl(★) ≔ inr(𝑎)
inr(𝑎) ⊕ inr(𝑏) ≔ inr(𝑎 ⊓ 𝑏) .

This gives a homomorphism head ≔ inr♯ : M(𝐴) → 1 +𝐴,

which picks out the least element of the free commutative

monoid.

6.3 Sorting functions
The free commutative monoid is also a monoid, hence, there

is a canonical monoid homomorphism 𝑞 : L(𝐴) → M(𝐴),
which is given by 𝜂𝐴

♯
. SinceM(𝐴) is (upto equivalence), a

quotient of L(𝐴) by symmetries (or a permutation relation),

it is a surjection (in particular, a regular epimorphism in Set
as constructed in type theory). Concretely,𝑞 simply includes

the elements of L(𝐴) into equivalence classes of lists in

M(𝐴), which “forgets” the order that was imposed by the

indexing of the list.

Classically, assuming the Axiom of Choice would allow us

to construct a section (right-inverse) to the surjection 𝑞, that

is, a function 𝑠 : M(𝐴) → L(𝐴) such that ∀𝑥 . 𝑞(𝑠 (𝑥)) = 𝑥 .

Or in informal terms, given the surjective inclusion into

the quotient, a section (uniformly) picks out a canonical

representative for each equivalence class. Constructively,

does 𝑞 have a section? If symmetry kills the order, can it

be resurrected?

L(𝐴) M(𝐴)
𝑠

𝑞

Figure 1. Relationship of L(𝐴) andM(𝐴)

Viewing the quotienting relation as a permutation

relation (from § 5.1), a section 𝑠 to 𝑞 has to pick out

canonical representatives of equivalence classes generated

by permutations. Using SList as an example, 𝑠 (𝑥 :: 𝑦 :: 𝑥𝑠) =
𝑠 (𝑦 :: 𝑥 :: 𝑥𝑠) for any 𝑥,𝑦 : 𝐴 and 𝑥𝑠 : SList(𝐴), and since

it must also respect ∀𝑥𝑠. 𝑞(𝑠 (𝑥𝑠)) = 𝑥𝑠 , 𝑠 must preserve all

the elements of 𝑥𝑠 . It cannot be a trivial function such as

𝜆 𝑥𝑠.[] – it must produce a permutation of the elements

of 𝑠! But to place these elements side-by-side in the list,

𝑠 must somehow impose an order on 𝐴 (invariant under

permutation), turning unordered lists of 𝐴 into ordered lists

of𝐴. Axiom ofChoice (AC) giving us a section 𝑠 to𝑞 “for free”

is analagous to how AC implies the well-ordering principle,

which states every set can be well-ordered. If we assumed

AC our problem would be trivial! Instead we study how

to constructively define such a section, and in fact, that is

exactly the extensional view of a sorting algorithm, and the

implications of its existence is that 𝐴 can be ordered, or

sorted.

6.3.1 Section from Order.

Proposition 17. Assume a decidable total order on 𝐴. There
is a sort function 𝑠 : M(𝐴) → L(𝐴) which constructs a section
to 𝑞 : L(𝐴) ↠ M(𝐴)

Proof sketch. We can construct such a sort function by

implementing any sorting algorithm. In our formalization

we chose insertion sort, because it can be defined easily

using the inductive structure of SList(𝐴) and List(𝐴). To
implement other sorting algorithms like mergesort, other

representations such as Bag and Array would be preferable,

as explained in § 5.4. To see how this proposition holds:

𝑞(𝑠 (𝑥𝑠)) orders an unordered list 𝑥𝑠 by 𝑠 , and discards the

order again by 𝑞 – imposing and then forgetting an order on

𝑥𝑠 simply permutes its elements,which proves𝑞 ◦ 𝑠 ∼ id. □

This is not surprising. . .we want to go the other way.

6.3.2 Order from Section. The previous section allowed

us to construct a section – how do we know this is a correct
sort function? At this point we ask: if we can construct a

section from order, can we construct an order from section?

Indeed, just by the virtue of 𝑠 being a section,we can (almost)

construct a total-ordering relation on the carrier set!

Definition 6.8. Given a section 𝑠 , we define:

least(𝑥𝑠) ≔ head(𝑠 (𝑥𝑠))
𝑥 ≼𝑠 𝑦 ≔ least(*𝑥,𝑦+) = inr(𝑥) .

That is, we take the two-element bag *𝑥,𝑦+, “sort” it by 𝑠 ,
and test if the head element is 𝑥 . Note, this is equivalent to

𝑥 ≼𝑠 𝑦 ≔ 𝑠*𝑥,𝑦+ = [𝑥,𝑦], because 𝑠 preserves length, and
the second element is forced to be 𝑦.

Proposition 18. ≼𝑠 is reflexive, antisymmetric, and total.
9



991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

CPP’25, Jan 19–25, 2025, Denver, CO, USA Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Proof. For all 𝑥 , least(*𝑥, 𝑥+) must be inr(𝑥), therefore 𝑥 ≼𝑠

𝑥 , giving reflexivity. For all 𝑥 and𝑦, given 𝑥 ≼𝑠 𝑦 and𝑦 ≼𝑠 𝑥 ,

we have least(*𝑥,𝑦+) = inr(𝑥) and least(*𝑦, 𝑥+) = inr(𝑦).
Since *𝑥,𝑦+ = *𝑦, 𝑥+, least(*𝑥,𝑦+) = least(*𝑦, 𝑥+), therefore
we have 𝑥 = 𝑦, giving antisymmetry. For all 𝑥 and 𝑦,

least(*𝑥,𝑦+) is merely either inr(𝑥) or inr(𝑦), therefore we
have merely either 𝑥 ≼𝑠 𝑦 or 𝑦 ≼𝑠 𝑥 , giving totality. □

Although 𝑠 correctly orders 2-element bags, it doesn’t

necessarily sort 3 or more elements – ≼𝑠 is not necessarily

transitive (a counterexample is given in Proposition 28). We

will enforce this by imposing additional constraints on the

image of 𝑠 .

Definition 6.9 (− ∈ im(𝑠)). The fiber of 𝑠 over 𝑥𝑠 : L(𝐴) is
given by fib𝑠 (𝑥𝑠) ≔

∑
(𝑦𝑠 : M(𝐴) ) 𝑠 (𝑦𝑠) = 𝑥𝑠 . The image of 𝑠

is given by im(𝑠) ≔
∑

(𝑥𝑠 : L(𝐴) ) ∥fib𝑠 (𝑥𝑠)∥−1. Simplifying,

we say that 𝑥𝑠 : L(𝐴) is “in the image of 𝑠”, or, 𝑥𝑠 ∈ im(𝑠), if
there merely exists a 𝑦𝑠 : M(𝐴) such that 𝑠 (𝑦𝑠) = 𝑥𝑠 .

If 𝑠 were a sort function, the image of 𝑠 would be the set

of 𝑠-“sorted” lists, therefore 𝑥𝑠 ∈ im(𝑠) would imply 𝑥𝑠 is

a correctly 𝑠-“sorted” list. First, we note that the 2-element

case is correct.

Proposition 19. 𝑥 ≼𝑠 𝑦 iff [𝑥,𝑦] ∈ im(𝑠).

Then, we state the first axiom on 𝑠 .

Definition 6.10 (im-cut). A section 𝑠 satisfies im-cut iff for

all 𝑥,𝑦, 𝑥𝑠:

𝑦 ∈ 𝑥 :: 𝑥𝑠 ∧ 𝑥 :: 𝑥𝑠 ∈ im(𝑠) → [𝑥,𝑦] ∈ im(𝑠) .

We use the definition of list membership from Definition 6.2.

The ∈ symbol is intentionally overloaded to make the axiom

look like a logical “cut” rule. Inforamlly, it says that the head

of an 𝑠-“sorted” list is the least element of the list.

Proposition 20. If𝐴 has a total order≤, insertion sort defined
using ≤ satisfies im-cut.

Proposition 21. If 𝑠 satisfies im-cut, ≼𝑠 is transitive.

Proof. Given 𝑥 ≼𝑠 𝑦 and 𝑦 ≼𝑠 𝑧, we want to show 𝑥 ≼𝑠

𝑧. Consider the 3-element bag *𝑥,𝑦, 𝑧+ : M(𝐴). Let 𝑢 be

least(*𝑥,𝑦, 𝑧+), by Definition 6.10 and Proposition 19, we

have 𝑢 ≼𝑠 𝑥 ∧ 𝑢 ≼𝑠 𝑦 ∧ 𝑢 ≼𝑠 𝑧. Since 𝑢 ∈ *𝑥,𝑦, 𝑧+, 𝑢
must be one of the elements. If 𝑢 = 𝑥 we have 𝑥 ≼𝑠 𝑧. If

𝑢 = 𝑦 we have 𝑦 ≼𝑠 𝑥 , and since 𝑥 ≼𝑠 𝑦 and 𝑦 ≼𝑠 𝑧 by

assumption, we have 𝑥 = 𝑦 by antisymmetry, and then we

have 𝑥 ≼𝑠 𝑧 by substitution. Finally, if𝑢 = 𝑧, we have 𝑧 ≼𝑠 𝑦,

and since𝑦 ≼𝑠 𝑧 and𝑥 ≼𝑠 𝑦 by assumption,we have 𝑧 = 𝑦 by

antisymmetry, and then we have 𝑥 ≼𝑠 𝑧 by substitution. □

6.3.3 Embedding orders into sections. Following from
Propositions 18 and 21, and Proposition 20, we have shown

that a section 𝑠 that satisfies im-cut produces a total

order 𝑥 ≼𝑠 𝑦 ≔ least(*𝑥,𝑦+) = inr(𝑥), and a total

order ≤ on the carrier set produces a section satisfying

im-cut, constructed by sorting with ≤. This constitutes an
embedding of decidable total orders into sections satisfying

im-cut.

Proposition 22. Assume 𝐴 has a decidable total order ≤, we
can construct a section 𝑠 that satisfies im-cut, such that ≼𝑠

constructed from 𝑠 is equivalent to ≤.

Proof. By the insertion sort algorithm parameterized by ≤,
it holds that [𝑥,𝑦] ∈ im(𝑠) iff 𝑥 ≤ 𝑦. By Proposition 19, we

have 𝑥 ≼𝑠 𝑦 iff 𝑥 ≤ 𝑦. We now have a total order 𝑥 ≼𝑠 𝑦

equivalent to 𝑥 ≤ 𝑦. □

6.3.4 Equivalence of order and sections. We want to

upgrade the embedding to an isomorphism, and it remains

to show that we can turn a section satisfying im-cut to a

total order ≼𝑠 , then construct the same section back from

≼𝑠 . Unfortunately, this fails (see Proposition 29)! We then

introduce our second axiom of sorting.

Definition 6.11 (im-cons). A section 𝑠 satisfies im-cons iff
for all 𝑥, 𝑥𝑠 ,

𝑥 :: 𝑥𝑠 ∈ im(𝑠) → 𝑥𝑠 ∈ im(𝑠)

This says that 𝑠-“sorted” lists are downwards-closed under

cons-ing, that is, the tail of an 𝑠-“sorted” list is also 𝑠-“sorted”.

To prove the correctness of our axioms, first we need to show

that a section 𝑠 satisfying im-cut and im-cons is equal to
insertion sort parameterized by the ≼𝑠 constructed from 𝑠 .

In fact, the axioms we have introduced are equivalent to the

standard inductive characterization of sorted lists, found in

textbooks, such as in [Appel 2023].

data Sorted (≤ : A → A → U) : List A → U where
sorted-[] : Sorted []

sorted-𝜂 : ∀ x → Sorted [ x ]

sorted- :: : ∀ x y zs → x ≤ y

→ Sorted (y :: zs) → Sorted (x :: y :: zs)

Note that Sorted≤ (𝑥𝑠) is a proposition for every 𝑥𝑠 , and

forces the list 𝑥𝑠 to be permuted in a unique way.

Lemma 6. Given an order ≤, for any 𝑥𝑠,𝑦𝑠 : L(𝐴), 𝑞(𝑥𝑠) =
𝑞(𝑦𝑠) ∧ Sorted≤ (𝑥𝑠) ∧ Sorted≤ (𝑦𝑠) → 𝑥𝑠 = 𝑦𝑠 .

Insertion sort by ≤ always produces lists that satisfy

Sorted≤ . Functions that also produce lists satisfying Sorted≤
are equal to insertion sort by function extensionality.

Proposition 23. Given an order ≤, if a section 𝑠 always
produces sorted list, i.e. ∀𝑥𝑠. Sorted≤ (𝑠 (𝑥𝑠)), 𝑠 is equal to
insertion sort by ≤.

Finally, this gives us correctness of our axioms.

Proposition 24. Given a section 𝑠 that satisfies im-cut
and im-cons, and ≼𝑠 the order derived from 𝑠 , then for all
𝑥𝑠 : M(𝐴), it holds that Sorted≼𝑠

(𝑠 (𝑥𝑠)). Equivalently, for
all lists 𝑥𝑠 : L(𝐴), it holds that 𝑥𝑠 ∈ im(𝑠) iff Sorted≼𝑠

(𝑥𝑠).
10
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Proof. We inspect the length of 𝑥𝑠 : M(𝐴). For lengths 0 and
1, this holds trivially. Otherwise, we proceed by induction:

given a 𝑥𝑠 : M(𝐴) of length ≥ 2, let 𝑠 (𝑥𝑠) = 𝑥 :: 𝑦 :: 𝑦𝑠 .

We need to show 𝑥 ≼𝑠 𝑦 ∧ Sorted≼𝑠
(𝑦 :: 𝑦𝑠) to construct

Sorted≼𝑠
(𝑥 :: 𝑦 :: 𝑦𝑠). By im-cut, we have 𝑥 ≼𝑠 𝑦, and by

im-cons, we inductively prove Sorted≼𝑠
(𝑦 :: 𝑦𝑠). □

Lemma 7. Given a decidable total order ≤ on 𝐴, we can
construct a section 𝑡≤ satisfying im-cut and im-cons, such that,
for the order ≼𝑠 derived from 𝑠 , we have 𝑡≼𝑠

= 𝑠 .

Proof. From 𝑠 we can construct a decidable total order

≼𝑠 since 𝑠 satisfies im-cut and 𝐴 has decidable equality

by assumption. We construct 𝑡≼𝑠
as insertion sort

parameterized by ≼𝑠 constructed from 𝑠 . By Proposition 23

and Proposition 24, 𝑠 = 𝑡≼𝑠
. □

Proposition 25. Assume𝐴 has a decidable total order≤, then
𝐴 has decidable equality.

Proof. We decide if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 , and by cases:

• if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 : by antisymmetry, 𝑥 = 𝑦.

• if ¬(𝑥 ≤ 𝑦) and 𝑦 ≤ 𝑥 : assuming 𝑥 = 𝑦, have 𝑥 ≤ 𝑦,

leading to contradiction by ¬(𝑥 ≤ 𝑦), hence 𝑥 ≠ 𝑦.

• if 𝑥 ≤ 𝑦 and ¬(𝑦 ≤ 𝑥): similar to the previous case.

• if ¬(𝑥 ≤ 𝑦) and ¬(𝑦 ≤ 𝑥): by totality, either 𝑥 ≤ 𝑦 or

𝑦 ≤ 𝑥 , which leads to a contradiction.

□

We can now state and prove our main theorem.

Definition 6.12 (Sorting function). A sorting function is

a section 𝑠 : M(𝐴) → L(𝐴) to the canonical surjection

𝑞 : L(𝐴) ↠ M(𝐴) satisfying two axioms:

• im-cut: 𝑥 :: 𝑥𝑠 ∈ im(𝑠) ∧ 𝑦 ∈ 𝑥 :: 𝑥𝑠 → [𝑥,𝑦] ∈ im(𝑠),
• im-cons: 𝑥 :: 𝑥𝑠 ∈ im(𝑠) → 𝑥𝑠 ∈ im(𝑠).

Theorem 6.13. Let DecTotOrd(𝐴) be the set of decidable
total orders on 𝐴, Sort(𝐴) be the set of correct sorting
functions with carrier set 𝐴, and Discrete(𝐴) be a predicate
which states 𝐴 has decidable equality. There is a map
𝑜2𝑠 : DecTotOrd(𝐴) → Sort(𝐴) × Discrete(𝐴), which is an
equivalence.

Proof. 𝑜2𝑠 is constructed by parameterizing insertion sort

with ≤. By Proposition 25, 𝐴 is Discrete. The inverse 𝑠2𝑜 (𝑠)
is constructed by Definition 6.8, which produces a total order

by Propositions 18 and 21, and a decidable total order by

Discrete(𝐴). By Proposition 22 we have 𝑠2𝑜 ◦ 𝑜2𝑠 = id, and
by Lemma 7 we have 𝑜2𝑠 ◦ 𝑠2𝑜 = id, giving an isomorphism,

hence an equivalence. □

Remarks. The sorting axioms we have come up with are

abstract properties of functions. As a sanity check, we

can verify that the colloquial correctness specification of a

sorting function (starting from a total order) matches our

axioms. We consider the correctness criterion developed

in [Alexandru 2023].

Proposition 26. Assume a decidable total order ≤ on 𝐴.
A sorting algorithm is a map sort : L(𝐴) → OL(𝐴), that
turns lists into ordered lists, where OL(𝐴) is defined as∑

(𝑥𝑠 : L(𝐴) ) Sorted≤ (𝑥𝑠), such that:

L(𝐴) OL(𝐴)

M(𝐴)

sort

𝑞 𝑞◦𝜋1

Sorting functions give sorting algorithms.

Proof. We construct our section 𝑠 : M(𝐴) → L(𝐴), and
define sort ≔ 𝑠 ◦ 𝑞, which produces ordered lists

by Proposition 24. □

7 Formalization
In this section, we discuss some aspects of the formalization.

The paper uses informal type theoretic language, and

is accessible without understanding any details of the

formalization. However, the formalization is done in Cubical

Agda, which has a few differences and a few shortcomings

due to proof engineering issues.

For simplicity we omitted type levels in the paper,

but our formalization has many verbose uses of universe

levels due to Agda’s universe polymorphism. Similarly,

h-levels were restricted to sets in the paper, but the

formalization is parameterized in many places for any h-

level (to facilitate future generalizations). The free algebra

framework currently only works with sets. Due to issues of

regularlity, certain computations only hold propositionally,

and the formalization requires proving auxiliary 𝛽 and 𝜂

computation rules in somce places. We also note the axioms

of sorting in the formalization are named differently from

the paper. We give a table of the Agda module names and

their corresponding sections in the paper in Table 1.

8 Discussion
We conclude by discussing some high-level observations,

related work, and future directions.

Free commutative monoids. The construction of finite

multisets and free commutative monoids has a long history,

and various authors have different approaches to it. We

refer the reader to the discussions in [Choudhury and Fiore

2023; Joram and Veltri 2023] for a detailed survey of these

constructions. Our work, in particular, was motivated by the

colloquial observation that: “there is no way to represent

free commutative monoids using inductive types”. From the

categorical point of view, this is simply the fact that the free

commutative monoid endofunctor on Set is not polynomial

(doesn’t preserve pullbacks). This has led various authors to

think about clever encodings of free commutative monoids

using inductive types by adding assumptions on the carrier

set – in particular, the assumption of total ordering on

11
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Module Description Reference
index Index of all files N/A

Cubical.Structures.Free Free algebras § 3.2

Cubical.Structures.Sig Algebraic signatures Definition 3.1

Cubical.Structures.Str Algebraic structures Definition 3.5

Cubical.Structures.Eq Equational theories § 3.3

Cubical.Structures.Tree Trees Definition 3.11

Cubical.Structures.Set.Mon.List Lists § 4.1

Cubical.Structures.Set.Mon.Array Arrays § 4.2

Cubical.Structures.Set.CMon.QFreeMon Quotiented-free monoid § 5.1

Cubical.Structures.Set.CMon.PList Quotiented-list § 5.2

Cubical.Structures.Set.CMon.SList Swapped-list § 5.3

Cubical.Structures.Set.CMon.Bag Bag § 5.4

Cubical.Structures.Set.CMon.SList.Sort Sort functions § 6

Table 1. Status of formalised results

the carrier set leads to the construction of “fresh-lists”,

by [Kupke et al. 2023], which forces the canonical sorted
ordering on the elements of the finite multiset.

It is worth noting that in programming practice, it is

usually the case that all user-defined types have some sort

of total order enforced on them, either because they’re finite,

or they can be enumerated in some way. Therefore, under

these assumptions, the construction of fresh lists is a very

reasonable way to represent free commutative monoids, or

finite multisets.

Correctness of Sorting. Sorting is a classic problem

in computer science, and the functional programming

view of sorting and its correctness has been studied

by various authors. The simplest view of sorting is a

function sort : L(N) → L(N), which permutes the list and

outputs an ordered list, which is studied in [Appel 2023].

Fundamentally, this is a very extrinsic view of program

verification, which is common in the Coq community, and

further, a very special case of a more general sorting

algorithm.

Henglein in “What Is a Sorting Function?” [Henglein

2009], studies sorting functions abstractly, without requiring

a total order on the underlying set. He considers sorting

functions as functions on sequences (lists), and recovers

the order by “sorting” an 𝑛-element list, and looking up

the position of the elements to be compared. Unlike us,

Henglein does not factorize the sorting function through free

commutative monoids, but the ideas are extremely similar.

We are able to give a more refined axiomatization of sorting

because we consider the symmetries, or permutations,

explicitly, and work in a constructive setting (using

explicit assumptions about decidability), and this is a key

improvement over this previous work.

The other more refined intrinsic view of correct sorting

has been studied in [Hinze et al. 2012], and further

expanded in [Alexandru 2023], which matches our point

of view, as explained in Proposition 26. However, their

work is not just about extensional correctness of sorting,

but also deriving various sorting algorithms starting from

bialgebraic semantics and distributive laws. Our work is

complementary to theirs, in that we are not concerned with

the computational content of sorting, but rather the abstract

properties of sorting functions, which are independent of

a given ordering. It remains to be seen how these ideas

could be combined – the abstract property of sorting, with

the intrinsic essence of sorting algortihms – and that is

a direction for future work. This paper only talks about

sorting lists and bags, but the abstract property of correct

sorting functions could be applied to more general inductive

types. We speculate that this could lead to some interesting

connections with sorting (binary) trees, and constructions

of (binary) search trees, from classical computer science.

Universal Algebra. One of the contributions of our work
is also a rudimentary framework for universal algebra, but

done in a more categorical style, which lends itself to

an elegant formalization in type theory. We believe this

framework could be improved and generalised to higher

dimensions, moving from sets to groupoids, and using a

system of coherences on top of a system of equations, which

we are already pursuing. Groupoidyfing free (commutative)

monoids to free (symmetric) monoidal groupoids is a natural

next step, and its connections to assumptions about total

orders on the type of objects would be an important direction

to explore.
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A Supplementary material for Section 2 (Notation)
A.1 Function extensionality
Within the scope of our work, funExt is heavily used in § 4.2 and § 5.4, where a 𝑛-element array 𝐴𝑛

is defined as lookup

functions Finn → 𝐴. Therefore, to prove two arrays are equal, we need to show that two functions would be equal, which is

impossible to do without funExt.

A.2 Higher Inductive Types
In our work, higher inductive types and set quotients are used extensively to define commutative data structures, which we

would demonstrate in § 5.

A.3 Univalence
Within the scope of our work, we want to primarily work with sets, therefore we add the truncation constructor whenever

necessary sowe need not concern ourselveswith higher-dimensional paths (or equalities). Sincewe havemultiple constructions

of free monoids and free commutative monoids, given in § 4 and § 5, having univalence allows us to easily transport proofs

and functions from one construction to another. Another instance where univalence is used is the definition of membership

proofs in ??, where we want to show to propositions are commutative: i.e. ∀𝑝, 𝑞 : hProp, 𝑝 ∨𝑞 = 𝑞 ∨ 𝑝 . Since 𝑝 and 𝑞 are types,

we need univalence to show 𝑝 ∨ 𝑞 = 𝑞 ∨ 𝑝 are in fact equal.

B Supplementary material for Section 3 (Universal Algebra)
Proposition 1. Suppose𝔉(𝑋 ) and𝔊(𝑋 ) are both free 𝜎-algebras on 𝑋 . Then𝔉(𝑋 ) ≃𝔊(𝑋 ), natural in 𝑋 .

Proof. By extending 𝜂𝑋 for each free construction, we have maps in each direction: 𝐺 ·𝜂𝑋 ♯
: 𝔉(𝑋 ) →𝔊(𝑋 ), and vice versa.

Finally, using Definition 3.10, we have 𝐹 ·𝜂𝑋 ♯ ◦ 𝐺 ·𝜂𝑋 ♯ ∼ (𝐹 ·𝜂𝑋 ♯ ◦ 𝐺 ·𝜂𝑋 )
♯ ∼ 𝐹 ·𝜂𝑋 ♯ ∼ id𝔉 (𝑋 ) . □

The free algebra construction automatically turns 𝐹 into an endofunctor on Set, where the action on functions is given

by: 𝑋
𝑓
−→ 𝑌 ↦→ 𝐹 (𝑋 )

(𝜂𝑌 ◦𝑓 )♯−−−−−−→ 𝐹 (𝑌 ). Further, this gives a monad on Set, with unit given by 𝜂, and multiplication given by

𝜇𝑋 ≔ 𝐹 (𝐹 (𝑋 ))
id𝐹 (𝑋 )

♯

−−−−−→ 𝐹 (𝑋 ).
The free algebra on the empty set𝔉(0) is inhabited by all the constant symbols in the signature. We note a few important

properties of free algebras on 0, 1, and coproducts.

Proposition 27.
• 𝜎-Alg(𝔉(0),𝔛) is contractible,
• if 𝜎 has one constant symbol, then𝔉(0) is contractible,
• the type of algebra structures on 1 is contractible,
• 𝔉(𝑋 + 𝑌 ) is the coproduct of𝔉(𝑋 ) and𝔉(𝑌 ) in 𝜎-Alg:

𝜎-Alg(𝔉(𝑋 + 𝑌 ),ℨ) ≃ 𝜎-Alg(𝔉(𝑋 ),ℨ) × 𝜎-Alg(𝔉(𝑌 ),ℨ) .

Proof. 𝐹 being a left adjoint, preserves coproducts. This makes 𝔉(0) initial in 𝜎-Alg. 𝔉(1) → 1 is contractible because 1 is

terminal in Set. □

C Supplementary material for Section 4 (Constructions of Free Monoids)
Definition C.1 (Concatenation). We define the concatenation operation ++ : List(𝐴) → List(𝐴) → List(𝐴), by recursion on

the first argument:

[] ++ 𝑦𝑠 = 𝑦𝑠

(𝑥 :: 𝑥𝑠) ++ 𝑦𝑠 = 𝑥 :: (𝑥𝑠 ++ 𝑦𝑠)

The proof that ++ satisfies monoid laws is straightforward (see the formalization for details).

Definition C.2 (Universal extension). For any monoid𝔛, and given a map 𝑓 : 𝐴 → 𝑋 , we define the extension 𝑓 ♯ : List(𝐴) →
𝔛 by recursion on the list:

𝑓 ♯ ( []) = 𝑒

𝑓 ♯ (𝑥 :: 𝑥𝑠) = 𝑓 (𝑥) • 𝑓 ♯ (𝑥𝑠)
14
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Proposition 3. (−)♯ lifts a function 𝑓 : 𝐴 → 𝑋 to a monoid homomorphism 𝑓 ♯ : List(𝐴) → 𝔛.

Proof. To show that 𝑓 ♯ is a monoid homomorphism, we need to show 𝑓 ♯ (𝑥𝑠++𝑦𝑠) = 𝑓 ♯ (𝑥𝑠) • 𝑓 ♯ (𝑦𝑠). We can do so by induction

on 𝑥𝑠 .

Case []: 𝑓 ♯ ( [] ++ 𝑦𝑠) = 𝑓 ♯ (𝑦𝑠), and 𝑓 ♯ ( []) • 𝑓 ♯ (𝑦𝑠) = 𝑒 • 𝑓 ♯ (𝑦𝑠) = 𝑓 ♯ (𝑦𝑠) by definition of (−)♯. Therefore, we have

𝑓 ♯ ( [] ++ 𝑦𝑠) = 𝑓 ♯ ( []) • 𝑓 ♯ (𝑦𝑠).
Case 𝑥 :: 𝑥𝑠 :

𝑓 ♯ ((𝑥 :: 𝑥𝑠) ++ 𝑦𝑠)

= 𝑓 ♯ (( [𝑥] ++ 𝑥𝑠) ++ 𝑦𝑠) by definition of concatenation

= 𝑓 ♯ ( [𝑥] ++ (𝑥𝑠 ++ 𝑦𝑠)) by associativity

= 𝑓 ♯ (𝑥 :: (𝑥𝑠 ++ 𝑦𝑠)) by definition of concatenation

= 𝑓 (𝑥) • 𝑓 ♯ (𝑥𝑠 ++ 𝑦𝑠) by definition of (−)♯

= 𝑓 (𝑥) • (𝑓 ♯ (𝑥𝑠) • 𝑓 ♯ (𝑦𝑠)) by induction

= (𝑓 (𝑥) • 𝑓 ♯ (𝑥𝑠)) • 𝑓 ♯ (𝑦𝑠) by associativity

= 𝑓 ♯ (𝑥 :: 𝑥𝑠) • 𝑓 ♯ (𝑦𝑠) by definition of (−)♯

Therefore, (−)♯ does correctly lift a function to a monoid homomorphism. □

Proposition 4 (Universal property for List). (List(𝐴), 𝜂𝐴) is the free monoid on 𝐴.

Proof. To show that (−)♯ is an inverse to − ◦ 𝜂𝐴, we first show (−)♯ is the right inverse to − ◦ 𝜂𝐴. For all 𝑓 and 𝑥 , (𝑓 ♯ ◦𝜂𝐴) (𝑥) =
𝑓 ♯ (𝑥 :: []) = 𝑓 (𝑥) • 𝑒 = 𝑓 (𝑥), therefore by function extensionality, for any 𝑓 , 𝑓 ♯ ◦ 𝜂𝐴 = 𝑓 , and (− ◦ 𝜂𝐴) ◦ (−)♯ = 𝑖𝑑 .

To show (−)♯ is the left inverse to − ◦ 𝜂𝐴, we need to prove for anymonoid homomorphism 𝑓 : List(𝐴) → 𝔛, (𝑓 ◦ 𝜂𝐴)♯ (𝑥𝑠) =
𝑓 (𝑥𝑠). We can do so by induction on 𝑥𝑠 .

Case []: (𝑓 ◦ 𝜂𝐴)♯ ( []) = 𝑒 by definition of the (−)♯ operation, and 𝑓 ( []) = 𝑒 by homomorphism properties of 𝑓 . Therefore,

(𝑓 ◦ 𝜂𝐴)♯ ( []) = 𝑓 ( []).
Case 𝑥 :: 𝑥𝑠 :

(𝑓 ◦ 𝜂𝐴)♯ (𝑥 :: 𝑥𝑠)

= (𝑓 ◦ 𝜂𝐴) (𝑥) • (𝑓 ◦ 𝜂𝐴)♯ (𝑥𝑠) by definition of (−)♯

= (𝑓 ◦ 𝜂𝐴) (𝑥) • 𝑓 (𝑥𝑠) by induction

= 𝑓 ( [𝑥]) • 𝑓 (𝑥𝑠) by definition of 𝜂𝐴

= 𝑓 ( [𝑥] ++ 𝑥𝑠) by homomorphism properties of 𝑓

= 𝑓 (𝑥 :: 𝑥𝑠) by definition of concatenation

By function extensionality, (−)♯ ◦ (− ◦ 𝜂𝐴) = 𝑖𝑑 . Therefore, (−)♯ and (−) ◦ [_] are inverse of each other.

We have now shown that (−) ◦ 𝜂𝐴 is an equivalence from monoid homomorphisms List(𝐴) → 𝔛 to set functions 𝐴 → 𝑋 ,

and its inverse is given by (−)♯, which maps set functions 𝐴 → 𝑋 to monoid homomorphisms List(𝐴) → 𝔛. Therefore, List is
indeed the free monoid. □

Lemma 1. Zero-length arrays (0, 𝑓 ) are contractible.

Proof. We need to show 𝑓 : Fin0 → 𝐴 is equal to 𝜆{}. By function extensionality this amounts to showing for all 𝑥 : 0,
𝑓 (𝑥) = (𝜆{})(𝑥), which holds by absurdity elimination on 𝑥 . Therefore, any array (0, 𝑓 ) is equal to (0, 𝜆{}). □

Proposition 5. (Array(𝐴),++) is a monoid.
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Proof. To show Array satisfies left unit, we want to show (0, 𝜆{}) ++ (𝑛, 𝑓 ) = (𝑛, 𝑓 ).

(0, 𝜆{}) ++ (𝑛, 𝑓 ) = (0 + 𝑛, 𝜆{} ⊕ 𝑓 )

(𝜆{} ⊕ 𝑓 ) (𝑘) =
{
(𝜆{})(𝑘) if 𝑘 < 0

𝑓 (𝑘 − 0) otherwise

It is trivial to see the length matches: 0 + 𝑛 = 𝑛. We also need to show 𝜆{} ⊕ 𝑓 = 𝑓 . Since 𝑛 < 0 for any 𝑛 : N is impossible,

(𝜆{} ⊕ 𝑓 ) (𝑘) would always reduce to 𝑓 (𝑘 − 0) = 𝑓 (𝑘), therefore (0, 𝜆{}) ++ (𝑛, 𝑓 ) = (𝑛, 𝑓 ).
To show Array satisfies right unit, we want to show (𝑛, 𝑓 ) ++ (0, 𝜆{}) = (𝑛, 𝑓 ).

(𝑛, 𝑓 ) ++ (0, 𝜆{}) = (𝑛 + 0, 𝑓 ⊕ 𝜆{})

(𝑓 ⊕ 𝜆{})(𝑘) =
{
𝑓 (𝑘) if 𝑘 < 𝑛

(𝜆{})(𝑘 − 0) otherwise

It is trivial to see the length matches: 𝑛 + 0 = 𝑛. We also need to show 𝑓 ⊕ 𝜆{} = 𝑓 . We note that the type of 𝑓 ⊕ 𝜆{} is
Finn+0 → 𝐴, therefore 𝑘 is of the type Finn+0. Since Finn+0 � Finn, it must always hold that 𝑘 < 𝑛, therefore (𝑓 ⊕ 𝜆{})(𝑘) must

always reduce to 𝑓 (𝑘). Thus, (𝑛, 𝑓 ) ++ (0, 𝜆{}) = (𝑛, 𝑓 ).
For associativity, we want to show for any array (𝑛, 𝑓 ), (𝑚,𝑔), (𝑜, ℎ), ((𝑛, 𝑓 ) ++ (𝑚,𝑔)) ++ (𝑜, ℎ) = (𝑛, 𝑓 ) ++ ((𝑚,𝑔) ++ (𝑜, ℎ)).

((𝑛, 𝑓 ) ++ (𝑚,𝑔)) ++ (𝑜, ℎ) = ((𝑛 +𝑚) + 𝑜, (𝑓 ⊕ 𝑔) ⊕ ℎ)

((𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘) =

{
𝑓 (𝑘) if 𝑘 < 𝑛

𝑔(𝑘 − 𝑛) otherwise

if 𝑘 < 𝑛 +𝑚

ℎ(𝑘 − (𝑛 +𝑚)) otherwise

(𝑛, 𝑓 ) ++ ((𝑚,𝑔) ++ (𝑜, ℎ)) = (𝑛 + (𝑚 + 𝑜), 𝑓 ⊕ (𝑔 ⊕ ℎ))

(𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) =

𝑓 (𝑘) k < n{
𝑔(𝑘 − 𝑛) k - n < m

ℎ(𝑘 − 𝑛 −𝑚) otherwise

otherwise

We first case split on 𝑘 < 𝑛 +𝑚 then 𝑘 < 𝑛.

Case 𝑘 < 𝑛 +𝑚, 𝑘 < 𝑛: Both (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) and ((𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘) reduce to 𝑓 (𝑘).
Case 𝑘 < 𝑛 +𝑚, 𝑘 ≥ 𝑛: ((𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘) reduce to 𝑔(𝑘 − 𝑛) by definition. To show (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) would also reduce to

𝑔(𝑘 − 𝑛), we first need to show ¬(𝑘 < 𝑛), which follows from 𝑘 ≥ 𝑛. We then need to show 𝑘 − 𝑛 < 𝑚. This can be done by

simply subtracting 𝑛 from both side on 𝑘 < 𝑛 +𝑚, which is well defined since 𝑘 ≥ 𝑛.

Case 𝑘 ≥ 𝑛 +𝑚: ((𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘) reduce to ℎ(𝑘 − (𝑛 +𝑚)) by definition. To show (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) would also reduce to

ℎ(𝑘 − (𝑛 +𝑚)), we first need to show ¬(𝑘 < 𝑛), which follows from 𝑘 ≥ 𝑛 +𝑚. We then need to show ¬(𝑘 − 𝑛 < 𝑚), which
also follows from 𝑘 ≥ 𝑛 +𝑚. We now have (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) = ℎ(𝑘 −𝑛 −𝑚). Since 𝑘 ≥ 𝑛 +𝑚, ℎ(𝑘 −𝑛 −𝑚) is well defined and
is equal to ℎ(𝑘 − (𝑛 +𝑚)), therefore (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) = (𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘) = ℎ(𝑘 − (𝑛 +𝑚)).

In all cases (𝑓 ⊕ (𝑔 ⊕ ℎ)) (𝑘) = ((𝑓 ⊕ 𝑔) ⊕ ℎ) (𝑘), therefore associativity holds. □

Lemma 2 (Array cons). Any array (𝑆 (𝑛), 𝑓 ) is equal to 𝜂𝐴 (𝑓 (0)) ++ (𝑛, 𝑓 ◦ 𝑆).

Proof. We want to show 𝜂𝐴 (𝑓 (0)) ++ (𝑛, 𝑓 ◦ 𝑆) = (𝑆 (𝑛), 𝑓 ).

(1, 𝜆{0 ↦→ 𝑓 (0)}) ++ (𝑛, 𝑓 ◦ 𝑆) = (1 + 𝑛, 𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆))

(𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) (𝑘) =
{
𝑓 (0) if 𝑘 < 1

(𝑓 ◦ 𝑆) (𝑘 − 1) otherwise

It is trivial to see the length matches: 1 + 𝑛 = 𝑆 (𝑛). We need to show (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) = 𝑓 . We prove by

case splitting on 𝑘 < 1. On 𝑘 < 1, (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) (𝑘) reduces to 𝑓 (0). Since, the only possible for 𝑘 when

𝑘 < 1 is 0, (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) (𝑘) = 𝑓 (𝑘) when 𝑘 < 1. On 𝑘 ≥ 1, (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) (𝑘) reduces to

(𝑓 ◦ 𝑆) (𝑘 − 1) = 𝑓 (𝑆 (𝑘 − 1)). Since 𝑘 ≥ 1, 𝑆 (𝑘 − 1) = 𝑘 , therefore (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) (𝑘) = 𝑓 (𝑘) when 𝑘 ≥ 1. Thus, in

both cases, (𝜆{0 ↦→ 𝑓 (0)} ⊕ (𝑓 ◦ 𝑆)) = 𝑓 . □
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Lemma 3 (Array split). For any array (𝑆 (𝑛), 𝑓 ) and (𝑚,𝑔),
(𝑛 +𝑚, (𝑓 ⊕ 𝑔) ◦ 𝑆) = (𝑛, 𝑓 ◦ 𝑆) ++ (𝑚,𝑔) .

Proof. It is trivial to see both array have length 𝑛 +𝑚. We want to show (𝑓 ⊕ 𝑔) ◦ 𝑆 = (𝑓 ◦ 𝑆) ⊕ 𝑔.

((𝑓 ⊕ 𝑔) ◦ 𝑆) (𝑘) =
{
𝑓 (𝑆 (𝑘)) if 𝑆 (𝑘) < 𝑆 (𝑛)
𝑔(𝑆 (𝑘) − 𝑆 (𝑛)) otherwise

((𝑓 ◦ 𝑆) ⊕ 𝑔) (𝑘) =
{
(𝑓 ◦ 𝑆) (𝑘) if 𝑘 < 𝑛

𝑔(𝑘 − 𝑛) otherwise

We prove by case splitting on 𝑘 < 𝑛. On 𝑘 < 𝑛, ((𝑓 ⊕ 𝑔) ◦ 𝑆) (𝑘) reduces to 𝑓 (𝑆 (𝑘)) since 𝑘 < 𝑛 implies 𝑆 (𝑘) < 𝑆 (𝑛),
and ((𝑓 ◦ 𝑆) ⊕ 𝑔) (𝑘) reduces to (𝑓 ◦ 𝑆) (𝑘) by definition, therefore they are equal. On 𝑘 ≥ 𝑛, ((𝑓 ⊕ 𝑔) ◦ 𝑆) (𝑘) reduces to
𝑔(𝑆 (𝑘) − 𝑆 (𝑛)) = 𝑔(𝑘 − 𝑛), and ((𝑓 ◦ 𝑆) ⊕ 𝑔) (𝑘) reduces to 𝑔(𝑘 − 𝑛) by definition, therefore they are equal. □

Proposition 6. (−)♯ lifts a function 𝑓 : 𝐴 → 𝑋 to a monoid homomorphism 𝑓 ♯ : Array(𝐴) → 𝔛.

Proof. To show that 𝑓 ♯ is a monoid homomorphism, we need to show 𝑓 ♯ (𝑥𝑠++𝑦𝑠) = 𝑓 ♯ (𝑥𝑠) • 𝑓 ♯ (𝑦𝑠). We can do so by induction

on 𝑥𝑠 .

Case (0, 𝑔): We have𝑔 = 𝜆{} by Lemma 1. 𝑓 ♯ ((0, 𝜆{})++𝑦𝑠) = 𝑓 ♯ (𝑦𝑠) by left unit, and 𝑓 ♯ (0, 𝜆{})•𝑓 ♯ (𝑦𝑠) = 𝑒•𝑓 ♯ (𝑦𝑠) = 𝑓 ♯ (𝑦𝑠)
by definition of (−)♯. Therefore, 𝑓 ♯ ((0, 𝜆{}) ++ 𝑦𝑠) = 𝑓 ♯ (0, 𝜆{}) • 𝑓 ♯ (𝑦𝑠).
Case (𝑆 (𝑛), 𝑔): Let 𝑦𝑠 be (𝑚,ℎ).

𝑓 ♯ ((𝑆 (𝑛), 𝑔) ++ (𝑚,ℎ))

= 𝑓 ♯ (𝑆 (𝑛 +𝑚), 𝑔 ⊕ ℎ) by definition of concatenation

= 𝑓 ((𝑔 ⊕ ℎ) (0)) • 𝑓 ♯ (𝑛 +𝑚, (𝑔 ⊕ ℎ) ◦ 𝑆) by definition of (−)♯

= 𝑓 (𝑔(0)) • 𝑓 ♯ (𝑛 +𝑚, (𝑔 ⊕ ℎ) ◦ 𝑆) by definition of ⊕, and 0 < 𝑆 (𝑛)

= 𝑓 (𝑔(0)) • 𝑓 ♯ ((𝑛,𝑔 ◦ 𝑆) ++ (𝑚,ℎ)) by Lemma 3

= 𝑓 (𝑔(0)) • (𝑓 ♯ (𝑛,𝑔 ◦ 𝑆) • 𝑓 ♯ (𝑚,ℎ))) by induction

= (𝑓 (𝑔(0)) • 𝑓 ♯ (𝑛,𝑔 ◦ 𝑆)) • 𝑓 ♯ (𝑚,ℎ)) by associativity

= 𝑓 ♯ (𝑆 (𝑛), 𝑔) • 𝑓 ♯ (𝑚,ℎ)) by definition of (−)♯

Therefore, (−)♯ does correctly lift a function to a monoid homomorphism. □

Proposition 7 (Universal property for Array). (Array(𝐴), 𝜂𝐴) is the free monoid on 𝐴.

Proof. To show that (−)♯ is an inverse to − ◦ 𝜂𝐴, we first show (−)♯ is the right inverse to − ◦ 𝜂𝐴. For all 𝑓 and 𝑥 , (𝑓 ♯ ◦𝜂𝐴) (𝑥) =
𝑓 ♯ (1, 𝜆{0 ↦→ 𝑥}) = 𝑓 (𝑥) • 𝑒 = 𝑓 (𝑥), therefore by function extensionality, for any 𝑓 , 𝑓 ♯ ◦ 𝜂𝐴 = 𝑓 , and (− ◦ 𝜂𝐴) ◦ (−)♯ = 𝑖𝑑 .

To show (−)♯ is the left inverse to − ◦ 𝜂𝐴, we need to prove for any monoid homomorphism 𝑓 : Array(𝐴) → 𝔛,

(𝑓 ◦ 𝜂𝐴)♯ (𝑥𝑠) = 𝑓 (𝑥𝑠). We can do so by induction on 𝑥𝑠 .

Case (0, 𝑔): By Lemma 1 we have 𝑔 = 𝜆{}. (𝑓 ◦ 𝜂𝐴)♯ (0, 𝜆{}) = 𝑒 by definition of the (−)♯ operation, and 𝑓 (0, 𝜆{}) = 𝑒 by

homomorphism properties of 𝑓 . Therefore, (𝑓 ◦ 𝜂𝐴)♯ (0, 𝑔) = 𝑓 (0, 𝑔).
Case (𝑆 (𝑛), 𝑔), we prove it in reverse:

𝑓 (𝑆 (𝑛), 𝑔)
= 𝑓 (𝜂𝐴 (𝑔(0)) ++ (𝑛,𝑔 ◦ 𝑆)) by Lemma 2

= 𝑓 (𝜂𝐴 (𝑔(0))) • 𝑓 (𝑛,𝑔 ◦ 𝑆) by homomorphism properties of 𝑓

= (𝑓 ◦ 𝜂𝐴) (𝑔(0)) • (𝑓 ◦ 𝜂𝐴)♯ (𝑛,𝑔 ◦ 𝑆) by induction

= (𝑓 ◦ 𝜂𝐴)♯ (𝑆 (𝑛), 𝑔) by definition of (−)♯

By function extensionality, (−)♯ ◦ (− ◦ 𝜂𝐴) = 𝑖𝑑 . Therefore, (−)♯ and (−) ◦ [_] are inverse of each other.
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We have now shown that (−) ◦ 𝜂𝐴 is an equivalence from monoid homomorphisms Array(𝐴) → 𝔛 to set functions 𝐴 → 𝑋 ,

and its inverse is given by (−)♯, which maps set functions 𝐴 → 𝑋 to monoid homomorphisms Array(𝐴) → 𝔛. Therefore,

Array is indeed the free monoid. □

D Supplementary material for Section 5 (Constructions of Free Comm. Monoids)
Proposition 8. (𝔉(𝐴)�≈, •, 𝑞(𝑒)) is a commutative monoid.

Proof. Since≈ is a congruence wrt •, we can lift • : 𝐹 (𝐴) → 𝐹 (𝐴) → 𝐹 (𝐴) to the quotient to obtain++ : 𝐹 (𝐴)�≈ → 𝐹 (𝐴)�≈ →
𝐹 (𝐴)�≈. ++ also satisfies the unit and associativity laws that • satisfy. Commutativity of ++ follows from the commutativity

requirement of ≈, therefore (𝐹 (𝐴)�≈,++, 𝑞(𝑖)) forms a commutative monoid. □

Proposition 9 (Universal property for𝔉(𝐴)�≈). (𝔉(𝐴)�≈, 𝜂𝐴 : 𝐴
𝜂𝐴−−→ 𝔉(𝐴)

𝑞
−→ 𝔉(𝐴)�≈) is the free comm. monoid on 𝐴.

Proof. To show that (−)♯ is an inverse to (−) ◦ 𝜂𝐴, we first show (−)♯ is the right inverse to (−) ◦ 𝜂𝐴. For all 𝑓 and 𝑥 ,

(𝑓 ♯ ◦ 𝜂𝐴) (𝑥) = (𝑓 ♯ ◦ 𝑞) (𝜇𝐴 (𝑥)) = 𝑓 (𝜇𝐴 (𝑥)). By universal property of 𝐹 , 𝑓 (𝜇𝐴 (𝑥)) = 𝑓 (𝑥), therefore (𝑓 ♯ ◦ 𝜂𝐴) (𝑥) = 𝑓 (𝑥). By
function extensionality, for any 𝑓 , 𝑓 ♯ ◦ 𝜂𝐴 = 𝑓 , and (− ◦ 𝜂𝐴) ◦ (−)♯ = 𝑖𝑑 .

To show (−)♯ is the left inverse to (−) ◦ 𝜂𝐴, we need to prove for any commutative monoid homomorphism 𝑓 : 𝔉(𝐴)≈ → 𝔛

and 𝑥 : 𝔉(𝐴)≈, (𝑓 ◦ 𝜂𝐴)♯ (𝑥) = 𝑓 (𝑥). To prove this it is suffice to show for all 𝑥 : 𝔉(𝐴), (𝑓 ◦ 𝜂𝐴)♯ (𝑞(𝑥)) = 𝑓 (𝑞(𝑥)).
(𝑓 ◦ 𝜂𝐴)♯ (𝑞(𝑥)) reduces to �(𝑓 ◦ 𝑞 ◦ 𝜇𝐴) (𝑥). Note that both 𝑓 and 𝑞 are homomorphism, therefore 𝑓 ◦ 𝑞 is a homomorphism.

By universal property of 𝐹 we get
�(𝑓 ◦ 𝑞 ◦ 𝜇𝐴) (𝑥) = (𝑓 ◦ 𝑞) (𝑥), therefore (𝑓 ◦ 𝜂𝐴)♯ (𝑞(𝑥)) = 𝑓 (𝑞(𝑥)).

We have now shown that (−) ◦ 𝜂𝐴 is an equivalence from commutative monoid homomorphisms 𝔉(𝐴)�≈ → 𝔛 to set

functions𝐴 → 𝑋 , and its inverse is given by (−)♯, which maps set functions𝐴 → 𝑋 to commutative monoid homomorphisms

𝔉(𝐴)�≈ → 𝔛. Therefore,𝔉(𝐴)�≈ is indeed the free commutative monoid on 𝐴. □

Proposition 10. Let 𝔛 be a commutative monoid, and 𝑓 : 𝐴 → 𝑋 . For 𝑥,𝑦 : 𝐴 and 𝑥𝑠,𝑦𝑠 : PList(𝐴), 𝑓 ♯ (𝑥𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠) =
𝑓 ♯ (𝑥𝑠 ++ 𝑦 :: 𝑥 :: 𝑦𝑠). Hence, Perm respects (−)♯.

Proof. We can prove this by induction on 𝑥𝑠 . For 𝑥𝑠 = [], by homomorphism properties of 𝑓 ♯, we can prove 𝑓 ♯ (𝑥 :: 𝑦 :: 𝑦𝑠) =
𝑓 ♯ ( [𝑥]) • 𝑓 ♯ ( [𝑦]) • 𝑓 ♯ (𝑦𝑠). Since the image of 𝑓 ♯ is a commutative monoid, we have 𝑓 ♯ ( [𝑥]) • 𝑓 ♯ ( [𝑦]) = 𝑓 ♯ ( [𝑦]) • 𝑓 ♯ ( [𝑥]),
therefore proving 𝑓 ♯ (𝑥 :: 𝑦 :: 𝑦𝑠) = 𝑓 ♯ (𝑦 :: 𝑥 :: 𝑦𝑠). For 𝑥𝑠 = 𝑧 :: 𝑧𝑠 , we can prove 𝑓 ♯ ((𝑧 :: 𝑧𝑠) ++ 𝑥 :: 𝑦 :: 𝑦𝑠) = 𝑓 ♯ ( [𝑧]) •
𝑓 ♯ (𝑧𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠). We can then complete the proof by induction to obtain 𝑓 ♯ (𝑧𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠) = 𝑓 ♯ (𝑧𝑠 ++ 𝑦 :: 𝑥 :: 𝑦𝑠)
and reassembling back to 𝑓 ♯ ((𝑧 :: 𝑧𝑠) ++ 𝑦 :: 𝑥 :: 𝑦𝑠) by homomorphism properties of 𝑓 ♯. □

Also, whenever we define a function on PList by pattern matching we would also need to show the function respects

Perm, i.e. Perm𝑎𝑠 𝑏𝑠 → 𝑓 (𝑎𝑠) = 𝑓 (𝑏𝑠). This can be annoying because of the many auxiliary variables in the constructor

perm-swap, namely 𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 . We need to show 𝑓 would respect a swap in the list anywhere between 𝑥𝑠 and 𝑦𝑠 , which

can unnecessarily complicate the proof. For example in the inductive step of Proposition 10, 𝑓 ♯ ((𝑧 :: 𝑧𝑠) ++ 𝑥 :: 𝑦 :: 𝑦𝑠) =
𝑓 ♯ ( [𝑧]) • 𝑓 ♯ (𝑧𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠), to actually prove this in Cubical Agda would involve first applying associativity to prove

(𝑧 :: 𝑧𝑠) ++ 𝑥 :: 𝑦 :: 𝑦𝑠 = 𝑧 :: (𝑧𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠), before we can actually apply homomorphism properties of 𝑓 . In the final

reassembling step, similarly, we also need to re-apply associativity to go from 𝑧 :: (𝑧𝑠 ++ 𝑦 :: 𝑥 :: 𝑦𝑠) to (𝑧 :: 𝑧𝑠) ++ 𝑦 :: 𝑥 :: 𝑦𝑠 .

Also since we are working with an equivalence relation we defined (Perm) and not the equality type directly, we cannot

exploit the many combinators defined in the standard library for the equality type and often needing to re-define combinators

ourselves. The trunc constructor is necessary to truncate SList down to a set, thereby ignoring any higher paths introduced

by the swap constructor. This is opposed to List, which does not need a trunc constructor because it does not have any path

constructors, therefore it can be proven that List(𝐴) is a set assuming 𝐴 is a set (see formalization).

Definition D.1 (Concatenation). We define the concatenation operation ++ : SList(𝐴) → SList(𝐴) → SList(𝐴) recursively,
where we also have to consider the (functorial) action on the swap path using ap.

[] ++ 𝑦𝑠 = 𝑦𝑠

(𝑥 :: 𝑥𝑠) ++ 𝑦𝑠 = 𝑥 :: (𝑥𝑠 ++ 𝑦𝑠)
ap++𝑦𝑠 (swap(𝑥,𝑦, 𝑥𝑠)) = swap(𝑥,𝑦,𝑦𝑠 ++ 𝑥𝑠)

[Choudhury and Fiore 2023] have already given a proof of (SList(𝐴),++, []) satisfying commutative monoid laws. We explain

the proof of ++ satisfying commutativity here.

Lemma 8 (Head rearrange). For all 𝑥 : 𝐴, 𝑥𝑠 : SList(𝐴), 𝑥 :: 𝑥𝑠 = 𝑥𝑠 ++ [𝑥].
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Proof. We can prove this by induction on 𝑥𝑠 . For 𝑥𝑠 ≡ [] this is trivial. For 𝑥𝑠 ≡ 𝑦 :: 𝑦𝑠 , we have the induction hypothesis

𝑥 :: 𝑦𝑠 = 𝑦𝑠 ++ [𝑥]. By applying 𝑦 :: (−) on both side and then apply swap, we can complete the proof. □

Theorem D.2 (Commutativity). For all 𝑥𝑠, 𝑦𝑠 : SList(𝐴), 𝑥𝑠 ++ 𝑦𝑠 = 𝑦𝑠 ++ 𝑥𝑠 .

Proof. By induction on 𝑥𝑠 we can iteratively apply Lemma 8 to move all elements of 𝑥𝑠 to after 𝑦𝑠 . This would move 𝑦𝑠 to the

head and 𝑥𝑠 to the end, thereby proving 𝑥𝑠 ++ 𝑦𝑠 = 𝑦𝑠 ++ 𝑥𝑠 . □

Unlike PList which is defined as a set quotient, this is defined as a HIT, therefore handling equalities between SList is much

simpler than PList. We would still need to prove a function 𝑓 respects the path constructor of SList when pattern matching,

i.e. 𝑓 (𝑥 :: 𝑦 :: 𝑥𝑠) = 𝑓 (𝑦 :: 𝑥 :: 𝑥𝑠). Unlike PList we do not need to worry about as many auxiliary variables since swap only

happens at the head of the list, whereas with PList we would need to prove 𝑓 (𝑥𝑠 ++ 𝑥 :: 𝑦 :: 𝑦𝑠) = 𝑓 (𝑥𝑠 ++ 𝑦 :: 𝑥 :: 𝑦𝑠).
One may be tempted to just remove 𝑥𝑠 from the perm-swap constructor such that it becomes perm-swap : ∀𝑥 𝑦 𝑦𝑠 𝑧𝑠 →
Perm (𝑥 :: 𝑦 :: 𝑦𝑠) 𝑧𝑠 → Perm (𝑦 :: 𝑥 :: 𝑦𝑠) 𝑧𝑠 . However this would break Perm’s congruence wrt to ++, therefore violating
the axioms of permutation relations. Also, since we are working with the identity type directly, properties we would expect

from swap, such as reflexivity, transitivity, symmetry, congruence and such all comes directly by construction, whereas with

Perm we would have to prove these properties manually. We can also use the many combinatorics defined in the standard

library for equational reasoning, making the handling of SList equalities a lot simpler.

Proposition 11. ≈ is a equivalence relation.

Proof. We can show any array 𝑥𝑠 is related to itself by the identity isomorphism, therefore ≈ is reflexive. If 𝑥𝑠 ≈ 𝑦𝑠 by 𝜎 , we

can show 𝑦𝑠 ≈ 𝑥𝑠 by 𝜎−1
, therefore ≈ is symmetric. If 𝑥𝑠 ≈ 𝑦𝑠 by 𝜎 and 𝑦𝑠 ≈ 𝑧𝑠 by 𝜙 , we can show 𝑥𝑠 ≈ 𝑧𝑠 by 𝜎 ◦ 𝜙 , therefore

≈ is transitive. □

On a more technical note, since Array and Bag are not simple data types, the definition of the monoid operation on them

++ are necessarily more complicated, and unlike List, PList and SList, constructions of Array and Bag via ++ often would not

normalize into a very simple form, but would instead expand into giant trees of terms. This makes it such that when working

with Array and Bag we need to be very careful or otherwise Agda would be stuck trying to display the normalized form of

Array and Bag in the goal and context menu. Type-checking also becomes a lengthy process that tests if the user possesses

the virtue of patience.

However, performing arbitrary partitioning with Array and Bag is much easier than List, SList, PList. For example, one

can simply use the combinator Finn+m
∼−→ Finn + Finm to partition the array, then perform operations on the partitions such

as swapping in Proposition 13, or perform operations on the partitions individually such as two individual permutation

in Proposition 12. This makes it such that when defining divide-and-conquer algorithms such as merge sort, Bag and Array
are more natural to work with than List, SList, and PList.
We use *𝑥,𝑦, . . .+ to denote 𝜂𝐴 (𝑥) • 𝜂𝐴 (𝑦) • · · · : M(𝐴), and [𝑥,𝑦, . . . ] to denote 𝜂𝐴 (𝑥) • 𝜂𝐴 (𝑦) • · · · : L(𝐴), or 𝑥 :: 𝑥𝑠 to

denote 𝜂𝐴 (𝑥) • 𝑥𝑠 : L(𝐴).

E Supplementary material for Section 6 (Application: Sorting Functions)
Proposition 28. ≼𝑠 is not necessarily transitive.

Proof. We give a counter-example of 𝑠 that would violate transitivity. Consider this section 𝑠 : SList(N) → List(N), we can
define a sort function sort : SList(N) → List(N) which sorts SList(N) ascendingly. We can use sort to construct 𝑠 .

𝑠 (𝑥𝑠) =
{
sort(𝑥𝑠) if length(𝑥𝑠) is odd
reverse(sort(𝑥𝑠)) otherwise

𝑠 ( [2, 3, 1, 4]) = [4, 3, 2, 1]
𝑠 ( [2, 3, 1]) = [1, 2, 3]

□

Proposition 29. Assume 𝐴 is a set with different elements, i.e. ∃𝑥,𝑦 : 𝐴. 𝑥 ≠ 𝑦, we cannot construct a full equivalence between
sections that satisfy im-cut and total orders on 𝐴.
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Proof. We give a counter-example of 𝑠 that satisfy im-cut but is not a sort function. Consider the insertion sort function

sort : M(N) → L(N) parameterized by ≤:
reverseTail( []) = []

reverseTail(𝑥 :: 𝑥𝑠) = 𝑥 :: reverse(𝑥𝑠)
𝑠 (𝑥𝑠) = reverseTail(sort(𝑥𝑠))

𝑠 (*2, 3, 1, 4+) = [1, 4, 3, 2]
𝑠 (*2, 3, 1+) = [1, 3, 2]
𝑠 (*2, 3+) = [2, 3]

By Proposition 22 we can use sort to construct ≼𝑠 which would be equivalent to ≤. However, the ≼𝑠 constructed by 𝑠 would

also be equivalent to ≤. This is because 𝑠 sorts 2-element list correctly, despite 𝑠 ≠ sort. Since two different sections satisfying

im-cut maps to the same total order, there cannot be a full equivalence. □
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