Continuations & Co-exponentials

Vikraman Choudhury

University of Glasgow

LFCS Seminar, University of Edinburgh
May 9, 2023

Last updated on May 10, 2023 at 12:03

Currying

We all know these:

curry :: ((a, b) > ¢c) - a— (b = c)
curry f ab = f (a, b)

uncurry :: (a > (b - ¢)) —» (a, b) = ¢
uncurry £ (a, b) =f ab

Currying and Co-currying?

We all know these:

curry :: ((a, b) > ¢c) - a— (b = c)
curry f ab = f (a, b)

uncurry :: (a > (b - ¢)) —» (a, b) = ¢
uncurry £ (a, b) =f ab

Puzzle: can we dualize these?

cocurry :: (c > (a+b)) > (c-b) - a
councurry :: ((c - b) > a) » (c = (a + b))

Ve

IS

No go

Technical results from category theory say you can't!

If you could (by LAPC/RAPL):
Ax0=0 A+1=1
If these were propositions in logic:

aNl & 1 aVT & T

But as types in a programming language, you'd have:

2=1+1=1

You can have a logic with subtraction, but not a programming language!

No go

x Boileau & Joyal: A cartesian closed and co-cartesian co-closed category is
a preorder.

x Abramsky: A x-autonomous category in which the monoidal structure is
cartesian is a preorder.

Linear logic comes to the rescue...
x Crolard: Subtractive logic
x Eades, Bellin: Co-intuitionistic Adjoint Logic

x Abramsky: connection between limitative results in proof theory and No-
Go theorems in quantum mechanics

But wait, | will show you a magic trick...

Currying and Co-currying

My kingdom for a horse...

curry :: ((a, b) > ¢c) > a— (b = c)
curry f ab = f (a, b)

uncurry :: (a - (b - ¢c)) = (a, b) = ¢
uncurry £ (a, b) =fahb

cocurry :: (c = (a+b)) > (c-a)=0b
cocurry f (c, k1) = Cont $ \k2 — runCont (f c) (either k1 k2)

councurry :: ((c -a) = b) = (c = (a + b))
councurry f ¢ = Cont $ \k — runCont (f (c, k . Left)) (k . Right)

| snuck in two kinds of arrows: —, =, but what isc - a?

N

\

e
255
2

i

Continuations

From Reynolds (1993):

«...settings in which continuations were found useful: They underlie a
method of program transformation (into continuation-passing style), a
style of definitional interpreter (defining one language by an interpreter
written in another language), and a style of denotational semantics (in
the sense of Scott and Strachey). In each of these settings, by represent-
ing “the meaning of the rest of the program” as a function or procedure,
continuations provide an elegant description of a variety of language
constructs, including call by value and goto statements.»

From Matt Might's blog;:

«...they're always explained with quasi-metaphysical phrases: “time travel”,
“parallel universes”, “the future of the computation”.»

ly,
N

=S
%6

R
k7

Continuation-Passing Style

How | learned continuations in Dan Friedman's C311:

(define factorial
(lambda (n)
(cond
[(zero? n) 1]
[else (* n (factorial (sub1 n)))1)))

This program isn't tail-recursive!

Continuations to the rescue...

\\\\%
N

N

Continuation-Passing Style

We can transform this into CPS:

(define factorial-cps
(lambda (n k)
(cond
[(zero? n) (k 1)]
[else (factorial-cps (subl n)

(lambda (v) (k (* nv))))1))

(define factorial
(lambda (n)
(factorial-cps n (lambda (v) v))))

L e
k'

™N

2

S

S

)
N

Delimited Continuations

Types help you see what's going on...

factorialCPS :: Int —» (Int > r) = r
factorialCPS n k =
if n ==
then k 1
else factorialCPS (n - 1) $ \v = k (n * v)

factorial :: Int — Int
factorial n = factorialCPS n $ \v — v

Continuations are encoded as functions: a — 7.

S

ZIN\

Uy,
Nl

5
Z

&/

Continuation monad

Monads make this even better!

newtype Cont r a = Cont { runCont :: (a = r) = r}

return :: a = Cont r a
return a = Cont $ \k = k a

(>>=) :: Cont ra— (a—> Cont rb) > Cont rb
Cont g >>= f = Cont $ \k2 = g $ \a — runCont (f a) k2

Now rewrite facrorialCPS using the continuation monad...

o
—72/////“1\\\\\\§

Continuation monad

Using do notation:

factorialCont :: Int — Cont r Int
factorialCont n =
if n ==
then return 1
else do
v « factorialCont (n - 1)
return (n * v)

factorial :: Int — Int
factorial n = runCont (factorialCont n) $ \v — v

This is automatically tail-recursive!

This is CPS without explicitly thinking about continuations as functions. S,

%///Illl\\\\\\%

CPS, formally

There are many ways of formalising CPS:

m Plotkin-style CPS

a = bturnsintoa = (b > r) = r,ora — Cont r h.

m Fischer-style CPS
a > bturnsinto(b = r) - (a = r).

There are several CPS calculi and connections to classical logic.

Embrace these ideas and take a step further...

M
—72/////“1\\\\\\§

Co-exponentials

Allow me to write:

e a*=a-—r
—a continuation for a, or
—a handler for a

e« b-a=(b, a%)
—a value of b, with a handler for a, or
—a value of b, with a typed hole for a

e a=b=a—->Contrhb
—a CPS transformed functiona — b

Now I'll reveal the trick...

e
—72/////“1\\\\\\§

Co-exponentials

This is co-currying with subtraction and =:

cocurry :: (c = (a+b)) > (c-a)=0b
cocurry f (c, k1) = Cont $ \k2 —
runCont (f c) $ \case
Left a — k1 a
Right b — k2 b

councurry :: ((c -a) = b) » (c = (a + b))
councurry f ¢ = Cont $ \k —
let k1 = k . Left
k2 = k . Right
in runCont (f (c, k1)) k2

e

%///Illl\\\\\\§

Co-exponentials

This is co-currying with all the explicit types:

cocurry :: (c > Cont r (a+ b)) > (c,a—>r) >Contrb
cocurry f (c, k1) = Cont $ \k2 —
runCont (f c) $ \case
Left a — k1 a
Right b — k2 b

councurry :: ((c, a—=>r) = Cont r b) = (¢ = Cont r (a + b))
councurry f ¢ = Cont $ \k —
let k1 :: a—>r

k1 = k . Left
k2 ::b—>r
k2 = k . Right

in runCont (f (c, k1)) k2

e

%///Illl\\\\\\§

Co-exponentials

[t computes this isomorphism...

c—> ((@a+b)=>r)—>r
=c—>(a@a—>r,b—>r)->r
zc>(a—>r)>(b->r)->r
z(c,a—>r)=>(b—=>r)—>r

From left to right, it splits a continuation for a + b.

From right to left, it joins two continuations for a and b.

You can implement these in your favorite programming language if you have

currying and sums.

Ve,

%///Illl\\\\\\§

A micrological study of continuations

There is an elegant mathematical theory behind all of this.

The Kleisli category of the continuation monad is co-cartesian co-closed!

It's a miraculous adjunction:

(=) x RX 4 X + (—)
This fact (in the dual sense) was known to several experts since the 90s (see
slide 44), but it is underappreciated and seems to have been forgotten.

| try to explain this in a more conceptual way (see slide 47). i

yf////ﬂll\\\\\\§

Co-exponential operators

You can implement these operators in your favorite programming language if
you have currying and sums.

Currying gives you eval and uneval (higher-order pairing).

id :: a — a
id a

1
)]

eval :: (a > b, a) = b
eval

curry id

uneval :: a = (b — (a, b))
uneval = uncurry id

%////lll\\\\\\§

Co-exponential operators

Dually, co-currying gives you coeval and couneval.

idk :: a = a
idk = return

coeval :: b = (a + (b - a))
coeval = councurry idk

couneval :: ((a+h) -a) =0b
couneval = cocurry idk

[coeval creates a choice, couneval annihilates a choicej

Compare: law of excluded middle: - + a + a*

Compare: creation/annihilation operators in differential LL (C., Fiore). il

—%/////lll\\\\\§

Co-lambda and Co-application

Let's simplify these into simpler combinators...

colam :: (a* = bh) = (() = (a + b))
colam f = councurry (f . snd)

coapp :: () = (a + b), a*) = b
coapp (f, k1) = f () >>= couneval . (,k1)

No more — arrows, now | can work with = arrows directly.

| will extend Moggi's computational metalanguage with these two operators.

Me

—%/////lll\\\\\§

A¥

Start from a call-by-value lambda calculus.

Add sum types, A*, and two typing rules...

(Binding a value gives you a function)

I'x:AkFe:B I'Fe;:A=B I'ke: A
I'-A(x:A)e:A=B I'tbejey: B

Ix:A*Fe:B I'e: A+ B I'kep: A*
THA(x:A*)e:A+B THeier:B

(Binding a continuation gives you a choice)

N

=
=

S

I\

A¥

And two call-by-value equations...

I''x:AkFe:B T'tFov: A I'+tv:A=B

't (A(x:A)e)v=e[r/x]: A= B T'EA(x:A)vx=v:A=B
Ix:A*Fe:B I'o:A* '~v:A+B

T (A(x:A%).e) v=e[/x]: B TFA(x:A*)ox=0:A+B

Or, Freyd categories with Kleisli exponentials & co-exponentials (see slide 51):
C(J(Cx A),B) = U(C, A = B) C(A*-B,C) = C(B, J(A) + C)

This is a fine-grained language for understanding control flow using continua-
tions under the hood.

e,

IS

A¥

Key ideas

» Main trick: Split values and computations (double negations).

» You can't create continuations using functions, only co-exponentials.
» No need to split contexts, and no polarities necessary.

Semantics

» It admits weakening and substitution.

» It has operational, categorical, and adequate denotational semantics.
» It is a conservative extension of STLC.

» Axiomatized by closed co-closed Freyd categories.

Applications

» Combines exponentials and co-exponentials, but is not degenerate.

» Clean encoding of subtractive/co-intuitionistic logics: A = B x A*,

» Clean language of values and continuations (cf. pji, Ay, polarities) g

=

NS

Philosophical Musings

Magic tricks are surprising, but once you reveal the trick, they become boring.
What lessons did we learn from this trick?

m No-go theorems
» Trick to getting around them: splitting values and computations.

» We turned products into premonoidal products.

» These are well-known techniques in PL.

» Instead of a programming language, we get a call-by-value programming
language.

» Where else can we play this game?

e,

?////Illl\\\\\§

Philosophical Musings

What lessons did we learn from this trick?

m Duality
» There is a deep duality between functions and continuations.

» Therefore, they should enjoy the same ontological status.

» We shouldn't conflate continuations with functions.

» Co-exponentials are a powerful interface, as we will see next.
» Duality is a fashionable trend in PL:

(pairs) products ‘ co-products (sums)

(effects) monads ‘ co-monads (co-effects, purity)

(induction) initial algebras ‘ final co-algebras (co-induction)

(functions) exponentials ‘ co-exponentials (continuations)

§\\\\W//@
%////ll\\\\\\\§

Co-exponentials in Action

x Classical Logic & Control Operators

x Speculative Execution & Backtracking

* Effect Handlers

* First-order Control Flow

Programming in A* is like programming in Haskell with monadic operations
and two operators: colam, coapp.

§\\\\W//@
%////lll\\\\\§

Classical logic and control

| can derive classical logic and control operators.
The identity co-function: A(x : A*). x gives you LEM!

lem :: a + a*
lem = colam idk

callCC comes from colam!

codiag :: a +a — a
codiag = either id id

callCC :: (a* = a) = a
callCC

fmap codiag . colam

N

IS

Backtracking operators

A toy DSL for backtracking using co-exponentials in Haskell...

assumeRight :: ((a = r) = Cont r b) — Cont r (a + b)
assumeRight = colam

resolveRight :: Cont r (a +b) = (@ —>r) - Cont r b
resolveRight = coapp

A way to swap choices...

swap :: (a+b) = (b + a)
swap = either Right Left

Compare: Thielecke's Double-Barrelled CPS i,

IS

Backtracking operators

Some derived operators:

assumeLeft :: ((b > r) = Cont r a) = Cont r (a + b)
assumelLeft = fmap swap . colam

resolveleft :: Cont r (a + b) - (b = r) — Cont r a
resolveleft = coapp . fmap swap

assumeBoth :: ((a > r) > (b > r) > r) = Cont r (a + b)
assumeBoth f = assumeRight $ \k1 — cont § \k2 — f k1 k2

resolveBoth :: Cont r (a+bh) > (a—>r) > (b—>r) > r
resolveBoth f k1 = runCont (resolveRight f k1)

E ey

7S

Backtracking SAT solver

data Prop = PVar String | PZero | POne
| PAnd Prop Prop | POr Prop Prop | PNot Prop

solve :: Env Bool — Prop — Cont r (Fail + Succ r)
solve env phi =
case phi of
PZero —
assumeLeft $ \succ —
return ()
POne —
assumeRight $ \fail —

Demo?

Compare: Jacob Errington's SAT solver, Jules Hedges' SAT solver. i,
%/////Ill\\\\\\§

Speculative Execution & Backtracking

You want to write a program of typea + b...

m Speculative Execution
» You need to make a choice a + b, but you can't commit to a choice Left
or Right.
» Speculatively, choose b with assumeRight. Then, assumeRight gives you a
free continuation a*. You may or may not use it.
» Do some computation and produce b.

D,

IS

Speculative Execution & Backtracking

The user of your a + b program wants to execute it...

m Backtracking
» There are two ways to use these sum types: case or resolve.
» If they case on the sum, there are two execution paths:

x When they use Right b, they execute your computation.

x When they use Left a, the system jumps to a top-level continuation.

S\\\\\“W/&é

N

M

T\

Speculative Execution & Backtracking

m Backtracking

» If they use a resolve combinator:

x If they call resolveRight, they have to plugin a continuation a*, pro-
ducing b. This continuation gets passed in to the environment of the

original computation.

x If they call resolveleft, they have to plugin a continuation b*, and
they get an a. This continuation gets spliced into the top-level stack.

Key idea: two continuations for two execution paths.

All this can be translated to A*, and the equations of Ax validate these informal
ideas of speculative execution and backtracking. This is an algebraic axiomati-
zation of control effects and handlers.

@lﬂl/@
IS

Effect handlers

| can derive effect handlers using co-exponential operators.

Well-known to Haskellers: Church-encode the free monad...

newtype Free f a = Free { runfFree :: forall r. (f r > r) = Cont r a }

There are two continuations to manage: the handler (algebra) f r — r, and
the generatora — r.

colamFree :: Free f a = Cont r (f r + a)
colamFree f = colam $ \alg — cont § \gen —
runCont (runFree f alg) gen

foldFree :: Functor f = (fr > r) > (a > r) > Free fa—r
foldFree alg gen = reset® . fmap (either alg gen) . colamFree

Demo? i
= 3é

S

Whither functions?

We've been using higher-order functions to encode continuations.
Do we need to?
Some ideas:
m Kileisli exponentials
From the point of view of Freyd categories:
We don't need U to be cartesian closed, we only need Kleisli exponentials.

But in practice, U is cartesian closed, with a strong monad.

S

Whither functions?

m Classical encoding
Encode functions A — Bas B + A*.

This gives a CPS-ed function:
C->B+A")=CxB" - A"

...which is a compromise.

e

IS

Whither functions?

m First-order languages with co-exponentials
Instead, what if we had a first-order language, and added co-exponentials?

Hasegawa's trick: using functional completeness, split A-calculus into two
first-order calculi: k¥ and (-calculi. This is like an arrow calculus.

Using co-exponentials, | can dualise functional completeness and produce
a first-order arrow language with control flow.

@lﬂl/@
g

TN

Functional Completeness

m Functional Completeness

STLC/CCCs enjoy a functional completeness property (Lambek & Scott

1986), like the deduction theorem in proof theory.

» to prove A — B, it is sufficient to prove B assuming A.

» to write a program of type A — B, it is sufficient to write a program of
type B, assuming a free variable of type A.

m Dual of Functional Completeness

CoCCoCCs enjoy a dual of functional completeness (interpreting co-expo-

nential objects using continuations):

» to prove A + B, it is sufficient to prove B assuming A™.

» to write a program of type A + B, it is sufficient to write a program of
type B, assuming a free continuation for A.

This can be proved by abstract nonsense (see slide 52). Sl
—%////Ill\\\\\\§

K/(

Hasegawa splits A-calculus into x/lift and {/pass: these are arrow calculi,

arrows have identity and composition, and these operators.

T'ktc:1~C lx:1~CkFf:A~B
THliftg(c) : A~ Cx A I-xxC.f:Cx A~ B

'Fc:1~C x:1~Ckf:A~B
T+ passg(c): (C= B) ~ B I+2xC.f: A~ (C= B)

Equational theory on slide 53.

e,

S

K*/g*

Dualising...
Ic:1~C* ILx:1~C*'Ff:A~B
T Flifth(c): A~ (A—C) I-x*xC.f:(A-C)~ B
Tkc:1~C* Ix:1~C'Ff:A~B
't passp(c): (C+B) ~ B TFZ*%C.f: A~ (C+B)

This gives you a first-order programming language with control flow operators.

If you add natural numbers, you get (first-order) primitive recursion with con-
trol flow. What is its expressive power? Can you write genericcount/effcount?

Equational theory on slide 54.

e,

S

Programming in «*/{*

These operators allow you to do surgery on first-order programs.

With an indeterminate z : Z%,

lift*(z) (*z.id Z + k*z.id pass*(z)
_— LA Z+(A-2) Z+ A

zid Z + lift(2) pass*(z) K*z.id
— .7+ Z+(A-Z)— S A-Z—5A

Rewrite programs using {*/pass™:

A B C D E

f *z.g n pass*(z) e
D D

A mechanism for breakpoints, checkpoints, code pointers, debugging?

e,

S

Some type isomorphisms

Like Tarski's high-school algebra identities, but with subtraction:

X-0=X

0—-X=0
X+Y)-Z=X-2)+ (Y -2)
X+2)=Y=z(-X)=>Z7

These make more sense once you translate them back to STLC with an R.

§\\\\z\yll/&%

Z

I

N\

S

Lawvere's d operator

Examples of co-Heyting algebras in nature:

x Closed subsets of a topological space

x Subobject lattices of presheaf categories

Following Lawvere, define the boundary operator: 0A = A — A.

These Leibniz maps exist:

J0(AxB) - 0AxB+ A x 0B
0AXxB+ A x 0B — 9(A x B)

To make this an iso, however, Lawvere requires a de Morgan law:

(AxB)* = A"+ B*

e,

S

Session Types

| discovered these when studying session types & classical linear logic using
(strict) star-autonomous categories, following Mellies' articles on negation, di-
alogue categories, chiralities, tensorial logic.

A star-autonomous category is linearly-distributive with appropriate duals.
AQ(—) 1A () (-)®B*4(-)®B
This gives: A - B=A"%B,and A-B = A ® B".

Cut in (H)CP is:
(B-C)® (A—-oB)—— (A —-C(C)

Dually:
(B-C)®(Ao-B) «——— (Ao-0C)

@lﬂl/@
IS

Co-exponentials in disguise
Some places where co-exponentials appear:

x CBV translation of pji calculus

x Streicher, Reus, Hofmann: Semantics of Ay calculus
* Thielecke's thesis: Section 4.5

x Selinger's co-control categories

Note: We fixed the result type R, but we can do more if we choose different Rs,
e.g. Q) : €% € is monadic.

Dk

IS

Conclusion

m Duality

Higher-order functions give you exponentials.

Higher-order continuations give you co-exponentials

m Co-exponential operators
» Algebraic axiomatization of control flow using continuations
» Interpretation of bi-intuitionistic, subtractive, classical logic
» Backtracking and Control operators

Fine-grained study of effect handlers

v

m Decomposing functions
» Linear logic gives A > B=!A - Band A - B=A*%B.
» Girardian comonads and Moggi's monads give: DA — TB.

» Continuations/co-exponentials give: A - B = A* + B. il
%/////ﬂ\\\\\§

Bonus slides

e

IS

A micrological study of continuations

Start with a cartesian closed category C with a fixed object R. Since it is self-
enriched, we can write YX for the hom C(X, Y).

R()
S
©oP —>() (¢
R

The contravariant negation functor is strong self-adjoint on the left.

) CP 5 C
A R sty y 1 C(X,Y) —» C°P(RX, RY)
- (=)o f
Y X
Bl Ao ra 2 B fro R R

CoP(RX,Y) = C(Y,RX)y 2= C(X x Y, R) = C(X,RY)

\\\\\Wl/&

////m\\\\\

A micrological study of continuations

By (bo, ff) factorisation, R‘= splits as follows, Cx is the full-image of R(=.

R(=)
/J__\

P —— ¢

R(=)
Cr

PRICOpHCR GRICR—)COp
A A A~ RA
(=)o
BiAHRA—{RB RALRBHRALRB

Fg has a left-adjoint: R‘™) o Gg - Fx.

COP(RGRX) Y) = C(RR”, Y) = C(RX, RY) = Cr(X, Fr(Y))

e

IS

A micrological study of continuations

If C has co-products, they become products in C°P, then products in Cg.
Cr(Z, X +Y) = C(R% RXTY)
= C(R?, RX x RY)
=~ C(R?, R*) x C(R% RY) = Cr(Z, X) x Cr(Z,Y)
Since Gy is ff, it reflects limits.
GR(X +Y) = R¥+Y = RX x RY = Gr(X) x Gr(Y)

Gpg wants to be a cartesian-closed functor.

If X = Y was the exponential in Cg,
Gr(X = Y) = Gg(Y)GrX) = (RV)R" = RY*R*

Hence, X = Y = Y x R¥, making Gg a cartesian-closed functor.

P

S

A micrological study of continuations

Finally, the continuation monad on Cis Tg = R~ o R(=),
Consider the Kleisli arrows:
Y
Cr (X, Y) = C(X, Tr(Y)) = C(X,RR") = C(RY,R¥) = CRP(X, Y)

Since Cy is cartesian closed, GTR becomes co-cartesian co-closed.

This uses self-enrichment and strength, and can be done more generally in an
enriched setting.

%\\\\\\W//&é
S

Closed co-closed Freyd categories

1,
A distributive closed Freyd category ! — C has:

x Kleisli exponentials:

J((=) x A) : U - C has a right adjoint A = (—):

C(J(C x A),B) = U(C, A = B)
Add:

* a function (=)* : [J] = || on the objects of U

x Kleisli co-exponentials:

J(A) + (=) : C - C has a specified left adjoint A* - (—):
C(A*-B,C) = C(B,J(A) + C)

This is a candidate axiomatisation of A*.

N

S
E

= 51
£

N

2

Functional Completeness

For a CCC C:

*

*

*

Ax (=) :C > Cisacomonad, (=) :C - Cis a monad.
The Kleisli category C(_y is a CCC (with an indeterminate value 1 — A).

Cax(—y and C(_>A are canonically equivalent, by currying.

For a CoCCoCC C:

*

*

A+ (=):C > Cisamonad,2(—) : C » Cis a comonad.

The Kleisli category Ca_, is a CoCCoCC (with an indeterminate continu-
ation1 —» A”).

Ca, ,and C4_ (_y are canonically equivalent, by co-currying.
(=) A+(-) Yy €q y ying

Wl

S

Equational Theory of «/{

Equational theory of x:

TFf:CxA~B
TFxxC.(folifty(x))=f:Cx A~ B

lx:1~Ckf:A~B I'kFc:1~C
T xxC.folifty(c) = f/x] : A~ B

Equational theory of (:

TFf:A~ (C= B)
T+ ¢xC.(passg(x)of) =f: A~ (C= B)

lx:1~CkFf:A~B I'Fc:1~C
T+ passg(c) 0 {xC.f = fle/2] : A~ B

N

S

*

Equational Theory of «*/{

Equational theory of «*:

TFf:A-C~B
I+ x*xC.(folifthy(x))=f: (A—C) ~ B

ILx:1~»C'Ff:A~B I'kc:1~C*
T Fx*xC.folifth(c) = fle/x] : A~ B

Equational theory of {™:

Tk f:A~ (C+B)
T+ 7*xC.(passh(x) o f) = f: A~ (C+B)

ILx:1~»C'Ff:A~B Tkc:1~C"
T+ passh(c) o *xC.f = fle/x] : A~ B

§\IW@2

IS

