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We advance the thesis that the simulation of quantum circuits is fundamentally about the efficient management

of a large (potentially exponential) number of delimited continuations. The family of Scheme languages, with

its efficient implementations of first-class continuations and with its imperative constructs, provides an elegant

host for modeling and simulating quantum circuits.

1 INTRODUCTION
The non-intuitive properties and widely-heralded computational advantage of quantum computing

are often associated with concepts like superposition, entanglement, and complementarity [Khren-

nikov 2021]. For the programming language aficionados, we instead present a different perspective:

the power of quantum computing can be attributed to an extraordinarily efficient management of

an exponential number of continuations.

We demonstrate that quantum computing is just one step away from well-established techniques

with roots in the Scheme community. Specifically, quantum computing can be reduced to the use of

continuations to implement backtracking search and non-determinism [Hinze 2000; Kiselyov et al.

2021, 2005; Wand and Vaillancourt 2004], augmented with a global mechanism to manage these

continuations. Thus, in addition to its expository role, this paper opens up a new perspective where

clever implementation techniques of continuations [Hieb et al. 1990], especially those relying on

speculative evaluation, can enable more efficient classical simulations of quantum algorithms in

particular cases.

Outline. We begin the next section with a review of the aspects of quantum computing that are

necessary for our exposition. We focus on a minimal model of quantum circuits that is still rich

enough to express general quantum computations up to arbitrary small errors, expressed inside

Racket.

To make the connections to continuations apparent, in Section 3, we express the semantics of

these quantum circuits using a slight generalization of search trees where the edges are decorated

with probability amplitudes. These amplitudes may be positive or negative to express constructive

or destructive interference patterns.

In Section 4, we give an interpreter that uses delimited continuations to evaluate the quantum

circuits. The interpreter is parameterized by a function that collects and manages the generated

continuations. A management strategy that invokes all the continuations and appends their results

produces full information about the probabilistic behavior of the quantum computation. Although

instructive, this information requires an exponential cost to generate and outputs information that

is physically unobservable.

An adjustment to the previous strategy, given in Section 5, that produces physically observable

results is to calculate interference patterns among the continuations allowing for some branches to

cancel each other, and then sample from the remaining branches. The straightforward implemen-

tation of this latter strategy would still be exponential, but it might be possible in some cases to

Authors’ addresses: Vikraman Choudhury, School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK,

vikraman.choudhury@glasgow.ac.uk; Borislav Agapiev, borislav.agapiev@gmail.com; Amr Sabry, Department of Computer

Science, Indiana University, Bloomington, 47408, USA, sabry@indiana.edu.

2022. XXXX-XXXX/2022/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2022.

HTTPS://ORCID.ORG/0000-0003-2030-8056
HTTPS://ORCID.ORG/0000-0002-1025-7331
https://orcid.org/0000-0003-2030-8056
https://orcid.org/0000-0002-1025-7331
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Vikraman Choudhury, Borislav Agapiev, and Amr Sabry

𝑎0 = |0⟩
𝑎1 = |0⟩
𝑏0 = |0⟩
𝑏1 = |0⟩

𝐻

𝐻

𝐻

𝐻

𝑚0

𝑚1

𝑟0

𝑟1

Fig. 1. Circuit for a small instance of Simon’s problem with 𝑛 = 2 and 𝑎 = 3. Given a 2-1 function 𝑓 : B𝑛 → B𝑛
with the property that there exists an 𝑎 such that 𝑓 (𝑥) = 𝑓 (𝑥 xor 𝑎) for all 𝑥 , the problem is to determine 𝑎.

discover more ingenious implementation strategies, which is an idea we leave for consideration in

future work, as explained in the concluding section.

2 QUANTUM CIRCUITS
The circuit model is a well-established universal model of quantum computing [Nielsen and

Chuang 2010]. We introduce the main idea using an extended example and then define a small

circuit language whose semantics we model using continuations.

2.1 An Example: Simon’s Problem
As shown in Fig. 1, a typical quantum circuit consists of an initialization phase (on the left), followed

by sequential and parallel compositions of elementary gates, and ending with measurements. Each

horizontal line in the circuit corresponds to a quantum bit (qubit). The initial state, and the result of

measuring each qubit, is a classical bit (a boolean value). As we explain below, between initialization

and measurement, the state of the qubit can be in a superposition of boolean values, or even be

entangled with other qubits.

The initial state of each of the four qubits in Fig. 1 is |0⟩, which is essentially equivalent to a

classical boolean 0. In preparation for possible entanglement among the four qubits, we collect the

individual values into an aggregate |0000⟩, where, by convention, the most significant position

refers to the top wire. The first step in the execution is to apply the Hadamard (𝐻 ) gate. The gate

maps |0⟩ to 1√
2

( |0⟩ + |1⟩) and |1⟩ to 1√
2

( |0⟩ − |1⟩). Both results of applying 𝐻 represent states that

are in equal superpositions of |0⟩ and |1⟩, with the sign expressing whether the values will lead to

constructive or destructive interference. The aggregate state is now:

1

2

(( |0⟩ + |1⟩) (|0⟩ + |1⟩) |00⟩) = 1

2

( |0000⟩ + |0100⟩ + |1000⟩ + |1100⟩)

The next four gates are all controlled-not gates which negate the target bit (marked with ⊕) if the
control bit is true. The execution therefore continues with the following states:

1

2
( |0000⟩ + |0100⟩ + |1000⟩ + |1100⟩) → 1

2
( |0000⟩ + |0100⟩ + |1010⟩ + |1110⟩)

→ 1

2
( |0000⟩ + |0100⟩ + |1011⟩ + |1111⟩)

→ 1

2
( |0000⟩ + |0110⟩ + |1011⟩ + |1101⟩)

→ 1

2
( |0000⟩ + |0111⟩ + |1011⟩ + |1100⟩)

At this point, the two qubits in the least significant positions are measured. By inspection, we see

that there is an equal probability of these two qubits being 00 or 11. Without any loss of generality,
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we assume these qubits are measured as 11. Then, the entire state collapses to:

1

√
2

( |0111⟩ + |1011⟩)

and ignoring the now irrelevant measured qubits, the top two qubits are in the state:

1

√
2

( |01⟩ + |10⟩)

Applying the two 𝐻 gates, the state before measurement is:

1

2

√
2

( |00⟩ − |01⟩ + |10⟩ − |11⟩ + |00⟩ + |01⟩ − |10⟩ − |11⟩)

The values with the same sign interfere constructively and the values with opposite signs interfere

destructively leading to the simplified state:

1

2

√
2

(2|00⟩ − 2|11⟩) = 1

√
2

( |00⟩ − |11⟩)

A measurement of the two qubits is equally likely to produce 00 or 11 as the value of the hidden 𝑎.

In the former case, the algorithm will have produced the vacuous identity that 𝑓 (𝑥) = 𝑓 (𝑥) and
the circuit needs to be re-executed. In the latter case, the algorithm successfully terminates with

the correct decimal value 3 for 𝑎.

2.2 An Approximately Universal Circuit Language
For theoretical studies of quantum computing, it is particularly appealing to exploit two facts which

justify focus on a tiny foundational core. First, by the principle of deferred measurement [Nielsen
and Chuang 2010], it is always possible to defer all measurements to the last step of a quantum

computation. This allows one to isolate what is called “pure quantum computing” which consists

of sequential and parallel compositions of elementary gates not involving measurements. Second,

if one is willing to tolerate arbitrary small errors, then all of pure quantum computing just needs

two elementary gates [Aharonov 2003]: the Hadamard gate introduced above and the controlled-
controlled-not (or Toffoli) gate which negates its target qubit when both control qubits are true.

We therefore restrict our attention to circuits built from sequences of the following two elemen-

tary operations:

(define-syntax-rule (CCX a b c) `(ccx ,a ,b ,c))
(define-syntax-rule (H a) `(h ,a))

where a, b, and c are natural numbers giving the index of the qubit in question, or boolean constants

#t or #f. As is obvious, CCX denotes the controlled-controlled-not gate, and H denotes the Hadamard

gate. For convenience, we further introduce the following two abbreviations:

(define-syntax-rule (X a) (CCX #t #t a))
(define-syntax-rule (CX a b) (CCX #t a b))

which introduce special cases of CCX where one or both control qubits are known to be true. Here

X denotes the not gate, and CX denotes the controlled-not gate. For example, the pure part of the

circuit in Fig. 1 can be written as the following expression:

(list
(H 0)
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(H 1)
(CX 0 2)
(CX 0 3)
(CX 1 2)
(CX 1 3)
(H 0)
(H 1))

3 CONTINUATIONS AND SEARCH TREES
Before considering quantum circuits, let us examine a toy example of an arithmetic expression. We

illustrate the use of continuations to evaluate 𝑥 + (𝑦 ∗ 5) where 𝑥 can take the value 1 or 2, and 𝑦

can take the value 3 or 4. We begin by visualizing the evaluation as a tree:

+

𝑥

1 2

∗

𝑦

3 4

5

Given primitives shift and reset to manipulate continuations [Danvy and Filinski 1990], the

four possible results of the expression can be collected in a list as follows. We set a continuation

delimiter [Felleisen 1988] at the beginning of the evaluation (i.e., at the root of the tree), and then

every time we encounter a node with a choice, we capture and shift two copies of the continuation

to explore both branches. Each individual result is wrapped in a list and the results of invoking the

continuations are appended:

(define (choose^ a b)
(shift k (append (k a) (k b))))

(define expr
(reset (let ([x (choose^ 1 2)]

[y (choose^ 3 4)])
(list (+ x (* 5 y))))))

The result of evaluating expr is a list.

> expr
'(16 21 17 22)

We now adapt this idea to simulate the quantum circuit in Fig. 1. We begin by visualizing the

evaluation of the pure gates as a tree, similar to the arithmetic expression above. The resulting

tree, shown in Fig. 2, starts with the initial state at the root. The semantics of X, CX, and CCX is

straightforward, only making a local change to the state. At each occurrence of a Hadamard gate,

evaluation splits into two branches. The crucial aspect of the tree is that the edges are labeled

with probability amplitudes that are cumulatively multiplied as evaluation progresses. These

amplitudes capture dependencies among the different paths that are highlighted with the colored

connectors on the right. Each dashed red arrow connects two identical states reached by different
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Fig. 2. Visualizing the evaluation of the pure gates in Fig. 1

execution paths with opposite probability amplitudes: they annihilate. The solid blue arrows

similarly connect two identical states reached by different execution paths, but with probability

amplitudes of the same sign: they reinforce each other. Thus, the final state of the execution

is
1

2
( |0000⟩ + |1100⟩ + |0011⟩ − |1111⟩).

4 CONTINUATIONS AND QUANTUM CIRCUITS
We now codify the analysis of the examples in the previous section in an interpreter for the idealized

quantum circuit language consisting of the ccx and h gates, described in Section 4.1. In Section 4.2,

we use the interpreter to run three examples including the running example of Fig. 1.

4.1 Continuation-based Evaluator
The ccx gate is a classical gate whose semantics is just as simple as the semantics of + or ∗. The
Hadamard h gate is the one interesting gate that introduces choices. Specifically the application of

h introduces a choice between 0 and ±1 with the proper weights. The evaluator in Fig. 3 processes

just one gate: it uses the delimited continuation primitive shift to generate continuations, and a

parameterized way to collect and process these continuations.

The evalg^ function takes two arguments: v is a tuple of the form `(,d ,bs), where d is the
probability amplitude, bs is a bit-vector representing the state, and g is the quantum gate we are

evaluating. The first two clauses define the semantics of the ccx gate by simply negating the target

qubit when the control qubits are set. If no control qubits are set, the state is unchanged. The
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(define (evalg^ v g)
(match `(,v ,g)

;; ccx with both control bits set
[`((,d ,bs) (ccx ,ctrl1 ,ctrl2 ,targ))
#:when (and (is-set? bs ctrl1)

(is-set? bs ctrl2))
`(,d ,(neg bs targ))]
;; ccx with control bit(s) unset
[`((,d ,bs) (ccx ,ctrl1 ,ctrl2 ,targ))
`(,d ,bs)]
;; hadamard with target bit set
[`((,d ,bs) (h ,targ))
#:when (is-set? bs targ)
(collect^ `(,(* hscale d) ,(neg bs targ))

`(,(* -1.0 hscale d) ,bs))]
;; hadamard with target bit unset
[`((,d ,bs) (h ,targ))
(collect^ `(,(* hscale d) ,bs)

`(,(* hscale d) ,(neg bs targ)))]))

Fig. 3. Continuation-based evaluator for quantum gates

semantics of h parallels the semantics of choice in the previous section: the rest of the computation

is duplicated, executed once for each choice, and the choices are collected using a collect^ function.
If the target qubit is set, we negate the amplitude, multiplying it by -1.0.

(define (evalc^ v c)
(foldl (lambda (g st) (evalg^ st g)) v c))

(define (run-circ t circ st)
(reset (match (evalc^ st circ)

[`(,d ,bs)
(match t
[`list (list `(,bs ,d))]
...)))))

Fig. 4. Continuation-based evaluator for complete circuits

As we represent circuits as lists of gates, to evaluate a circuit we simply fold over the circuit, as

shown in Fig. 4. Finally, the entry point to run a circuit is to call evalc^ with the circuit and the

initial state, enclosing the entire evaluation using a reset combinator which acts as the delimiter

for the captured continuation. We use an additional argument t in that entry point which is a tag

that lets us choose which instance of collect^ to use.
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𝑥0 = |0⟩
𝑥1 = |0⟩

𝐻

𝑥0 = |0⟩ 𝐻 𝑋 𝐻

Fig. 5. Two small quantum circuits

4.2 Examples with List Collector
The interpreter is parameterized by an implementation of the function collect^ which dictates

how we combine and manage the results of the intermediate computations. We will explore two

instances of collect^, one in this section, and one in the next. In both instances, we first use shift
to capture the continuation k, and invoke it on the two arguments x and y giving us access to the

underlying states a and b. In this section, we use the simplest strategy which collects all the states

in a list:

(define (collect^ x y)
(shift
k
(let ([a (k x)]

[b (k y)])
(cond

((and (list? a) (list? b)) (append a b))
...

As examples of running circuits using this implementation, we consider two small circuits, shown

in Fig. 5. The first circuit is a h gate followed by a cx gate, operating on two qubits initialized to

|00⟩. We can represent and execute it as follows, using lists for state management.

(run-circ `list
(list (H 0)

(CX 0 1))
`(1.0 ,(make-vector 2 #f)))

The execution happens as follows. The initial state is |00⟩. At the h gate, the rest of the computation,

i.e., the application of cx is duplicated and executed once with the state
1√
2

|00⟩ and once with the

state
1√
2

|10⟩. The results are accumulated in a list producing the final result [ 1√
2

|00⟩, 1√
2

|11⟩].
The second circuit on the right in Fig. 5 is more interesting. It consists of an h, x, and h gate in

series, on one qubit. We represent and execute it as follows.

(run-circ `list
(list (H 0)

(X 0)
(H 0))

`(1.0 ,(vector #f)))

The first occurrence of h duplicates the continuation consisting of the application of x followed by

h. That continuation itself generates a nested choice, producing four distinct continuations in total.

Tracing through the evaluation of the circuit, the final answer is the list [ 1
2
|0⟩,− 1

2
|1⟩, 1

2
|0⟩, 1

2
|1⟩].

However, this evaluation does not combine the probabilities, which is the only physically realiz-

able observation. The state |0⟩ has two positive probability amplitudes, which leads to constructive

interference, and the state |1⟩ has two opposite amplitudes, which cancel each other out, leading to
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destructive interference. Our current evaluator does not observe this, but we can change that by

switching to another instance of collect^ in the next section.

At this point, our main thesis becomes evident: quantum computing efficiently (and some-

what mysteriously) manages these four distinct continuations using constructive and destructive

interference ensuring that the only possible observable result is |0⟩.
Before concluding this section, we confirm that evaluating the pure gates of the circuit in Fig. 1

indeed produces the leaves of the tree shown in Fig. 2:

> (run-simon-list)
(+0.25|0000〉)
(+0.25|0100〉)
(+0.25|1000〉)
(+0.25|1100〉)
(+0.25|0011〉)
(-0.25|0111〉)
(+0.25|1011〉)
(-0.25|1111〉)
(+0.25|0011〉)
(+0.25|0111〉)
(-0.25|1011〉)
(-0.25|1111〉)
(+0.25|0000〉)
(-0.25|0100〉)
(-0.25|1000〉)
(+0.25|1100〉)

5 CONTINUATIONS AND INTERFERENCE OF PROBABILITY AMPLITUDES
In the previous section, we evaluated the pure part of a quantum circuit, producing a list of states

in the end. However, this evaluation does not combine the probabilities, that is, the states at the

end are in superposition, but the probability amplitudes are not combined. By using lists to manage

the quantum states, we simply explored all branches of the search tree.

For example, consider the evaluation of the second circuit in Fig. 5. The final state is given by

the list [ 1
2
|0⟩,− 1

2
|1⟩, 1

2
|0⟩, 1

2
|1⟩]. Here, the state |0⟩ has two positive probability amplitudes, which

leads to constructive interference, and the state |1⟩ has two amplitudes of opposing signs, which

cancel each other out, leading to destructive interference.

To allow our evaluator to combine the probabilities, we will use hash tables to represent these

states along with their probability amplitudes. The hash table maps bit-vectors to probability

amplitudes. All we have to do is change the implementation of our collect^ function.

(define (collect^ x y)
(shift
k
(let ([a (k x)]

[b (k y)])
(cond

...
((and (hash? a) (hash? b)) (hash-union a b #:combine +))))))

, Vol. 1, No. 1, Article . Publication date: August 2022.



Scheme Pearl: Quantum Continuations

To combine two hash tables, we take their union. If a bit-vector is repeated, we simply add the

probability amplitudes, using the + function to combine the two values that are mapped to by the

same key. This means that two branches with the same state but opposite amplitudes will cancel

each other out, and states with amplitudes of the same sign will reinforce each other.

The runner initializes the hash table with the initial bit-vector and amplitude. To run the example

with the hash implementation, we simply change the tag passed to it as an argument.

(define (run-circ t circ st)
(reset (match (evalc^ st circ)

[`(,d ,bs)
(match t
...
[`hash (hash bs d)])])))

(run-circ `hash
(list (H 0)

(X 0)
(H 0))

`(1.0 ,(vector #f)))

The final observation now is [1 |0⟩], as expected.
We also evaluate the circuit in Fig. 1 using the hash table implementation. Following the evaluation

tree in Fig. 2, the states connected by the dashed red arrows get annihilated, and the ones connected

by the solid blue arrows get reinforced.

> (run-simon-hash)
(+0.50|0000〉)
(+0.50|1100〉)
(+0.50|0011〉)
(-0.50|1111〉)

6 REFLECTIONS & CONCLUSIONS
We represented quantum states as bit-vectors with their probability amplitudes, using lists and

hash tables to store and combine them. Another way of representing them is to directly work

with probability distributions, which can be approximately implemented using continuations. We

quickly discuss a short implementation of classical probability distributions using continuations,

where events are encoded as functions (-> a p), and probability distributions are encoded as

higher-order functionals (-> (-> a p) p).
We can write a choose-p function that takes two probability distributions k1 and k2, with a sam-

pling bias p, and returns a new distribution by calculating the convex combination of probabilities

of events in the two distributions.

(define (choose-p p k1 k2)
(lambda (f)

(let ([p1 (* p (k1 f))]
[p2 (* (- 1.0 p) (k2 f))])

(+ p1 p2))))
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To produce a constant probability distribution, given a value, for any event, we apply the value to

the event. The expectation of an event is computed by simply applying the event to the underlying

continuation.

(define (const-p a)
(lambda (f) (f a)))

(define (expectation f k)
(k f))

Using these combinators, we can write yet another implementation of the evaluator, where we

use the choose-p operation (with no bias) to collect two states. For example, we can execute the

example in Fig. 1.

> (run-simon-prob)
(+0.25|0000〉)
(+0.25|0010〉)
(+0.25|0001〉)
(+0.25|0011〉)
(+0.25|1100〉)
(-0.25|1110〉)
(+0.25|1101〉)
(-0.25|1111〉)
(+0.25|1100〉)
(+0.25|1110〉)
(-0.25|1101〉)
(-0.25|1111〉)
(+0.25|0000〉)
(-0.25|0010〉)
(-0.25|0001〉)
(+0.25|0011〉)

However, it is obvious that these probability amplitudes do not have cancellation, and we do

not get the desired observation with interference. This encoding of probability distributions only

works for classical probabilities and not quantum probabilities – to move to quantum computing,

we need to move from classical probability theory to generalized probabilistic theory (GPT). We

hope to investigate these ideas connecting them to this work on continuations in the future.

By using hash tables to represent probability distributions, we are sampling from the distribution

at every step of the computation when we evaluate a h gate. On the other hand, by using contin-

uations to represent probability distributions, we’re avoiding sampling until the very end, when

a measurement is made. Combining these techniques could lead to techniques for implementing

speculative execution in quantum computers.

We have presented a continuation-based analysis of quantum computing which shows that

it efficiently (and somewhat mysteriously) manages an exponential number of continuations. It

would be however incorrect to conclude that quantum computing can manage arbitrary such

collections of continuations as this would imply it can solve NP-complete problems efficiently

which is not believed to be true. Discovering instances in which collect can be implemented

without necessarily invoking each continuation might provide insights on the elusive power of

quantum computing.
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From a different perspective, it is known that there is a duality between values and continua-

tions [Curien and Herbelin 2000; Filinski 1989] with values flowing from producers to consumers

and continuations flowing from consumers to producers. This suggests a re-interpretation of our

continuation-based semantics as a distributed system with positive offers by producers and negative

counter-offers by consumers, which would be worth investigating in detail.
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SUPPLEMENTARY MATERIAL
We include the complete implementation of the evaluator and the circuit examples discussed

in Sections 4 and 5.

1 #lang racket
2

3 (require racket/control racket/hash racket/vector)
4

5 ;; vector and hash helper operations
6

7 (define (upd v i f)
8 (let ([w (vector-copy v)])
9 (vector-set! w i (f (vector-ref w i)))
10 w))
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11

12 (define (neg v i)
13 (upd v i not))
14

15 (define hscale
16 (/ 1.0 (sqrt 2.0)))
17

18 (define (is-set? v i)
19 (cond ((nonnegative-integer? i) (vector-ref v i))
20 ((boolean? i) i)
21 (else (error "is-set?: invalid index"))))
22

23 ;; syntax for gates
24

25 (define-syntax-rule (X a) (CCX #t #t a))
26 (define-syntax-rule (CX a b) (CCX #t a b))
27 (define-syntax-rule (CCX a b c) `(ccx ,a ,b ,c))
28 (define-syntax-rule (H a) `(h ,a))
29

30 ;; collect^ operation
31

32 (define (collect^ x y)
33 (shift
34 k
35 (let ([a (k x)]
36 [b (k y)])
37 (cond
38 ((and (list? a) (list? b)) (append a b))
39 ((and (hash? a) (hash? b)) (hash-union a b #:combine +))
40 (else (error "collect^: unknown state"))))))
41

42 ;; gate and circuit evaluator
43

44 (define (evalg^ v g)
45 (match `(,v ,g)
46 [`((,d ,bs) (ccx ,ctrl1 ,ctrl2 ,targ))
47 #:when (and (is-set? bs ctrl1)
48 (is-set? bs ctrl2))
49 `(,d ,(neg bs targ))]
50 [`((,d ,bs) (ccx ,ctrl1 ,ctrl2 ,targ))
51 `(,d ,bs)]
52 [`((,d ,bs) (h ,targ))
53 #:when (is-set? bs targ)
54 (collect^ `(,(* hscale d) ,(neg bs targ))
55 `(,(* -1.0 hscale d) ,bs))]
56 [`((,d ,bs) (h ,targ))
57 (collect^ `(,(* hscale d) ,bs)
58 `(,(* hscale d) ,(neg bs targ)))]
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59 [_ (error "evalg^: invalid arguments")]))
60

61 (define (evalc^ v c)
62 (foldl (lambda (g st) (evalg^ st g)) v c))
63

64 ;; pretty printer
65

66 (define (pretty-vec bs)
67 (string-append
68 "|"
69 (foldl (lambda (b s) (string-append (if b "1" "0") s))
70 "〉"
71 (vector->list bs))))
72

73 (define (pretty-prob d)
74 (~r d #:sign '+ #:precision '(= 2)))
75

76 (define (pretty-state st)
77 (cond
78 [(list? st)
79 (for-each
80 (match-lambda*
81 [`((,bs ,d)) #:when (< (abs d) 0.01) (void)]
82 [`((,bs ,d)) (printf "(~a~a)~n" (pretty-prob d) (pretty-vec bs))])
83 st)]
84 [(hash? st)
85 (hash-for-each
86 st
87 (match-lambda*
88 [`(,bs ,d) #:when (< (abs d) 0.01) (void)]
89 [`(,bs ,d) (printf "(~a~a)~n" (pretty-prob d) (pretty-vec bs))]))]
90 [else (error "pretty-state: unknown state")]))
91

92 ;; runner
93

94 (define (run-circ t circ st)
95 (reset (match (evalc^ st circ)
96 [`(,d ,bs)
97 (match t
98 [`list (list `(,bs ,d))]
99 [`hash (hash bs d)]
100 [_ (error "run-circ: invalid tag")])])))
101

102 ;; H-CX example
103

104 (define (run-hcx-list)
105 (pretty-state (run-circ `list
106 (list (H 0)
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107 (CX 0 1))
108 `(1.0 ,(make-vector 2 #f)))))
109

110 (define (run-hcx-hash)
111 (pretty-state (run-circ `hash
112 (list (H 0)
113 (CX 0 1))
114 `(1.0 ,(make-vector 2 #f)))))
115

116 ;; H-X-H example
117

118 (define (run-hxh-list)
119 (pretty-state (run-circ `list
120 (list (H 0)
121 (X 0)
122 (H 0))
123 `(1.0 ,(vector #f)))))
124

125 (define (run-hxh-hash)
126 (pretty-state (run-circ `hash
127 (list (H 0)
128 (X 0)
129 (H 0))
130 `(1.0 ,(vector #f)))))
131

132 ;; Simon example
133

134 (define (run-simon-list)
135 (pretty-state (run-circ `list
136 (list (H 0)
137 (H 1)
138 (CX 0 2)
139 (CX 0 3)
140 (CX 1 2)
141 (CX 1 3)
142 (H 0)
143 (H 1))
144 `(1.0 ,(make-vector 4 #f)))))
145

146 (define (run-simon-hash)
147 (pretty-state (run-circ `hash
148 (list (H 0)
149 (H 1)
150 (CX 0 2)
151 (CX 0 3)
152 (CX 1 2)
153 (CX 1 3)
154 (H 0)
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155 (H 1))
156 `(1.0 ,(make-vector 4 #f)))))
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