
Reversible Programming Languages

Vikraman Choudhury

April, 2018

1 Reversible Programming Languages
Moore’s Law observes that the number of electronic components in a hardware
circuit doubles approximately every two years. This iteration has been going
on for decades and has resulted in a marked increase in power consumption of
hardware circuits. With classical models of computation, there exists a theoretical
limit on the energy consumption of any computation, the von Neumann-Landauer
limit. Landauer’s principle states that,

…any logically irreversible manipulation of information, such as the
erasure of a bit or the merging of two computation paths, must be ac-
companied by a corresponding entropy increase in non-information-
bearing degrees of freedom of the information-processing apparatus
or its environment Landauer [1961]

An erasure of information in a closed system is always accompanied by an
increase in energy consumption. To erase 𝑛 bits of information 𝑛 ⋅𝑘𝐵 ⋅ 𝑙𝑛 2 amount
of energy is required, where 𝑇 is the temperature of the circuit in Kelvin, and 𝑘𝐵
is the Boltzmann constant. This motivates the need to develop reversible models
of computation, where information or bits are never erased, so that reversible
computing systems are not subject to the von Neumann-Landauer limit.

To realize a fully reversible computation system, we need reversibility at every
level of abstraction. Much progress has been made on achieving reversibility
at the circuit and gate levels, but not at the high-level programming language
level. A reversible high-level language should be able to be compiled down to a
low-level reversible assembly language without significant overhead.

This survey explores some reversible programming languages and their se-
mantics.

1

Janus Grammar

𝑝𝑟𝑜𝑔 ∶∶= 𝑝𝑚𝑎𝑖𝑛 𝑝∗ (program)
𝑡 ∶∶= int | stack (data type)

𝑝𝑚𝑎𝑖𝑛 ∶∶= procedure main () (int 𝑥([𝑛])? | stack 𝑥)∗ 𝑠
(main procedure)

𝑝 ∶∶= procedure 𝑞(𝑡 𝑥, … , 𝑡 𝑥) 𝑠 (procedure definition)
𝑠 ∶∶= 𝑥 ⊙ = 𝑒 | 𝑥[𝑒] ⊙ = 𝑒 (assignment)

| if 𝑒 then 𝑠 else 𝑠 fi 𝑒 (conditional)
| from 𝑒 do 𝑠 loop 𝑠 until 𝑒 (loop)
| push(𝑥, 𝑥) | pop(𝑥, 𝑥) (stack modification)
| local 𝑡 𝑥 = 𝑒 𝑠 delocal 𝑡 𝑥 = 𝑒 (local variable block)
| call 𝑞(𝑥, … , 𝑥) | uncall 𝑞(𝑥, … , 𝑥) (procedure invocation)
| skip | 𝑠 𝑠 (statement sequence)

𝑒 ∶∶= 𝑛 | 𝑥 | 𝑥[𝑒] | 𝑒 ⊗ 𝑒 | empty(𝑥) | top(𝑥) | nil (expression)
⊙ ∶∶= + | - | ^ (operator)
⊗ ∶∶= ⊙ | * | / | % | & | | | && | || | < | > | = | != | <= | >= (operator)

Figure 1: EBNF grammar for Janus

1.1 Janus
The reversible programming language Janus (named after the two-faced Greco-
Roman god of beginnings and endings) was created by Cristopher Lutz and
Howard Derby at Caltech in 1982 Lutz [1986]. It was later rediscovered and
formalized in Yokoyama and Glück [2007] and some modifications were suggested
in Yokoyama et al. [2008]. We consider the modified version of the language here.

Janus is a procedural language where every program statement is locally-
invertible. The data types are restricted to integers, integer arrays of fixed size,
and integer stacks of dynamic size. Procedures are made of program statements
of different kinds.

For a conditional statement, there is a branch condition and an exit assertion
expression. The exit assertion is used to reversibly join the two paths of computa-
tion in the branches. Similarly, for a loop statement, there is an entry assertion

2

and an exit condition. When executed in reverse, the exit condition serves as the
entry assertion and vice versa. Stack updates are done using push and pop which
are forced to be inversions of each other, by presupposing that the variable being
pushed to is zero-cleared, which happens on popping.

For a variable update to be reversible, the original store should remain reach-
able by subsequent uncomputation. So the only updates that are allowed are the
ones which are injective in their first argument and have a defined inverse. The
expression being updated with cannot depend in any way on the variable being
updated. This is enforced by restrictions on binding and scoping. A variable
identifier on the left hand side cannot occur on the right hand side, and no two
identifiers can point to the same location in memory. Finally, call and uncall are
used to invoke procedures in the forwards and backwards direction.

Computationally, Janus is known to be r-Turing complete in Yokoyama et al.
[2008], because it can simulate any reversible Turing machines.

1.2 R
The reversible programming language R (not the statistical programming language
of the same name) is an imperative reversible language developed at MIT in
1997 Frank [1997]. It is a compiled language, with an S-expression syntax, which
targets the Pendulum reversible instruction set 1.3.

The data types of R are restricted to integers and integer arrays, and the syntax
is similar to Janus, allowing forward and backward execution of procedures.

The if statement requires that the value of the conditional expression is the
same before and after the conditional is executed, which allows reversing the
direction of execution so that the right branch can be chosen. It should be noted
that this is equivalent to conditionals in Janus with the conditional expression
being used as the entry and exit assertion. The same holds for the for loop, where
the initial and terminal values of the iteration variable should be the same before
and after the loop.

The let statement is a local assignment which is guaranteed to be reversible
by ensuring that the variable is zero-cleared when it goes out of scope. This is
equivalent to the local/delocal statements in Janus. Modifications to variables
are restricted to increment, negate, swap, and update statements, which works
similarly as in Janus.

3

R Grammar

𝑝𝑟𝑜𝑔 ∶∶= 𝑠∗ (program)
𝑠 ∶∶= (defmain 𝑝𝑟𝑜𝑔𝑛𝑎𝑚𝑒 𝑠∗) (main routine)

| (defsub 𝑠𝑢𝑏𝑛𝑎𝑚𝑒 (𝑛𝑎𝑚𝑒∗) 𝑠∗) (subroutine)
| (defword 𝑛𝑎𝑚𝑒 𝑛) (global variable)
| (defarray 𝑛𝑎𝑚𝑒 𝑛 ∗) (global array)
| (call 𝑠𝑢𝑏𝑛𝑎𝑚𝑒 𝑒∗) (call subroutine)
| (rcall 𝑠𝑢𝑏𝑛𝑎𝑚𝑒 𝑒∗) (reverse-call subroutine)
| (if 𝑒 then 𝑠∗) (conditional)
| (for 𝑛𝑎𝑚𝑒 = 𝑒 to 𝑒 𝑠∗) (loop)
| (let (𝑛𝑎𝑚𝑒 <- 𝑒) 𝑠∗) (variable binding)
| (printword 𝑒) | (println) (output)
| (𝑙𝑜𝑐 ++) | (- 𝑙𝑜𝑐) (increment/negate)
| (𝑙𝑜𝑐 <-> 𝑙𝑜𝑐) | (𝑙𝑜𝑐 ⊙ 𝑒) (swap/update)

𝑙𝑜𝑐 ∶∶= 𝑛𝑎𝑚𝑒 | (* 𝑒) | (𝑒 _ 𝑒) (location)
𝑒 ∶∶= 𝑙𝑜𝑐 | (𝑒 ⊗ 𝑒) | 𝑛 (expression)
⊙ ∶∶= += | -= | ^= | <=< | >=> (update operator)
⊗ ∶∶= + | - | & | << | >> | */ (expression operator)

| = | < | > | <= | >= | != (relational operator)

Figure 2: EBNF grammar for R

4

1.3 PISA
The Pendulum microprocessor and the Pendulum ISA (PISA) is a logically re-
versible computer architecture created at MIT by Vieri [1995]. It resembles a mix
of PDP-8 and RISC and is the first reversible programmable processor architecture.

𝑖 𝑖−1

ADD 𝑟1 𝑟2 SUB 𝑟1 𝑟2
SUB 𝑟1 𝑟2 ADD 𝑟1 𝑟2
ADDI 𝑟 𝑐 ADDI 𝑟 −𝑐
RL 𝑟 𝑐 RR 𝑟 𝑐
RR 𝑟 𝑐 RL 𝑟 𝑐
RLV 𝑟1 𝑟2 RRV 𝑟1 𝑟2
RRV 𝑟1 𝑟2 RLV 𝑟1 𝑟2

Figure 3: Inversion rules for PISA instructions, all other instructions are self-
inverse

The interesting bit is the existence of a direction bit (DIR) special-purpose
register, alongwith the program counter (PC) and the branch register (BR) for
control flow. DIR is either +1 or -1 depending on the direction of execution. If BR
is 0, DIR gets added to PC. If BR is non-zero, the product of BR and DIR is added
instead.

The uncoditional jump instructions BRA and RBRA (reverse BRA) work as
usual but also modify the DIR bit to implement forward or reverse call functional-
ity. The corresponding addition/subtraction/bit operations are reversed according
to the value of the DIR bit.

SWAPBR allows direct control of the BR register to implement dynamic jumps.
EXCH and DATA can be used to manipulate memory cells directly. The bit wise
operations work as usual, but the result is stored in a third register to allow
reversibility.

A formalization of the control flow logic is presented in Axelsen et al. [2007].
A translation from Janus to PISA is presented in Axelsen [2011] and a translation
from R to PISA in Frank [1997].

5

1.4 Remarks
Our survey of reversible high level languages shows that they are restricted to
finite integer and array datatypes, and first order procedures. This calls for more
expressive reversible higher-order languages with a menagerie of inductive or
recursive datatypes. A purely functional reversible language should allow a more
principled reasoning about effects, for example, using monads as are prevalent in
purely functional languages Moggi [1991].

Finite types are first class citizens in the Pi family of reversible languages
in Bowman et al. [2011], and recursive datatypes in Theseus James and Sabry
[2014], which also embeds a first order fragment of the simply typed lambda
calculus James and Sabry [2012]. It is conjectured in Carette and Sabry [2016]
that these languages are complete with respect to weak equivalences on finite
sets. Frobenius monads are known to give semantics to effectful reversible com-
putations Heunen and Karvonen [2015], but they have not been explored in the
design of a reversible programming language.

Computational trinitarianism nLab is a central principle of programming
language design, as preached by Robert Harper. Logic, Languages, and Categories
are three manifestations of one central notion of computation. Once instance of
this is the duality between mathematics, computation and categories, as evident
in the case of type theory.

Logic

Languages Categories

As suggested by Michael Shulman, this dogma generalises to higher dimen-
sional type theory, using the dualities between homotopical mathematics, higher
computation, and higher categories, which are well studied in Homotopy Type
Theory.

One can conjecture if such a principle can be established for reversible com-
putation. There is a duality between the syntax of a reversible programming
language (as in Pi/Theseus) and higher groupoids Carette et al. [2017]. It re-
mains to be seen whether this triangle can be completed by finding analogues

6

Homotopical Mathematics

Higher Computation Higher Categories

in mathematics which rely on reversible principles, such as isomorphisms or
equivalences.

Reversible Mathematics

Reversible Computation Higher Groupoids

7

References
Rolf Landauer. Irreversibility and heat generation in the computing process. IBM

journal of research and development, 5(3):183–191, 1961.

Christopher Lutz. Janus: a time-reversible language. Letter to R. Landauer., 1986.

Tetsuo Yokoyama and Robert Glück. A reversible programming language and its
invertible self-interpreter. In Proceedings of the 2007 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation, pages 144–153.
ACM, 2007.

Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Principles of a
reversible programming language. In Proceedings of the 5th conference on
Computing frontiers, pages 43–54. ACM, 2008.

Michael P Frank. The r programming language and compiler. Technical report,
MIT Reversible Computing Project Memo, 1997.

Carlin James Vieri. Pendulum–a reversible computer architecture. PhD thesis,
Massachusetts Institute of Technology, 1995.

Holger Bock Axelsen, Robert Glück, and Tetsuo Yokoyama. Reversible machine
code and its abstract processor architecture. In International Computer Science
Symposium in Russia, pages 56–69. Springer, 2007.

Holger Bock Axelsen. Clean translation of an imperative reversible programming
language. In International Conference on Compiler Construction, pages 144–163.
Springer, 2011.

Eugenio Moggi. Notions of computation and monads. Information and computa-
tion, 93(1):55–92, 1991.

William J Bowman, Roshan P James, and Amr Sabry. Dagger traced symmetric
monoidal categories and reversible programming. 2011.

RP James and A Sabry. Theseus: a high level language for reversible computing,
work-in-progress report at rc (2014), 2014.

Roshan P James and Amr Sabry. Isomorphic interpreters from logically reversible
abstract machines. In International Workshop on Reversible Computation, pages
57–71. Springer, 2012.

8

Jacques Carette and Amr Sabry. Computing with semirings and weak rig
groupoids. In European Symposium on Programming Languages and Systems,
pages 123–148. Springer, 2016.

Chris Heunen and Martti Karvonen. Reversible monadic computing. Electron.
Notes Theor. Comput. Sci., 319(C):217–237, December 2015. ISSN 1571-0661. doi:
10.1016/j.entcs.2015.12.014. URL http://dx.doi.org/10.1016/j.entcs.2015.12.014.

nLab. computational trinitarianism. https://ncatlab.org/nlab/show/
computational+trinitarianism.

Jacques Carette, Chao-Hong Chen, Vikraman Choudhury, and Amr Sabry.
From reversible programs to univalent universes and back. arXiv preprint
arXiv:1708.02710, 2017.

9

http://dx.doi.org/10.1016/j.entcs.2015.12.014
https://ncatlab.org/nlab/show/computational+trinitarianism
https://ncatlab.org/nlab/show/computational+trinitarianism

	Reversible Programming Languages
	Janus
	R
	PISA
	Remarks

